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ABSTRACT:
A model has been developed to predict the effect of random seafloor roughness on synthetic aperture sonar (SAS)

image statistics, based on the composite roughness approximation–a physical scattering model. The continuous

variation in scattering strength produced by a random slope field is treated as an intensity scaling on the image

speckle produced by the coherent SAS imaging process. Changes in image statistics caused by roughness are

quantified in terms of the scintillation index (SI). Factors influencing the SI include the seafloor slope variance, geo-

acoustic properties of the seafloor, the probability density function describing the speckle, and the signal-to-noise

ratio. Example model-data comparisons are shown for SAS images taken at three different sites using three different

high-frequency SAS systems. Agreement between the modeled and measured SI show that it is possible to link

range-dependent image statistics to measurable geo-acoustic properties, providing the foundation necessary for solv-

ing problems related to the detection of targets using high-frequency imaging sonars, including performance predic-

tion or adaptation of automated detection algorithms. Additionally, this work illustrates the possible use of SAS

systems for remote sensing of roughness parameters such as root mean square slope or height.
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Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0013837
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I. INTRODUCTION

Synthetic aperture sonar (SAS) is rapidly becoming a

standard tool for seafloor imaging (Hagemann, 1980;

Hansen, 2011), seafloor characterization (Williams, 2015;

Zare et al., 2017), and target detection (Sternlicht et al.,
2016; Williams, 2018). An understanding of the physical

processes affecting the acoustic scattering statistics of SAS

images is a vital step toward fully utilizing the data pro-

duced by these systems for remote sensing, seafloor segmen-

tation, automated target detection, or sonar performance

prediction applications. In regions with homogeneous geo-

acoustic properties, the local texture seen in images from

side-looking systems, such as sidescan sonar or SAS, are

indicative of local, small-scale, seafloor slope variations. An

example SAS image of a randomly rough sandy seafloor

taken in 2015 off the coast of northwest, Florida, using the

Naval Surface Warfare Centre’s (NSWC) experimental SAS

system (Sternlicht et al., 2016) is shown in Fig. 1 and shows

increasing variation in intensity as the range from the sonar

increases. These increasingly strong intensity fluctuations as

a function of range are due to the larger variation in scatter-

ing strength versus angle that exists at lower mean grazing

angles. These fluctuations in intensity will modulate the

imaging speckle, strongly influencing the overall statistical

characteristics of SAS images (Lyons et al., 2010).

The continuous variation in scattering strength pro-

duced by a random slope field can be treated as an intensity

scaling on the image speckle that is produced by the coher-

ent SAS imaging process. Speckle is produced by the coher-

ent summation of scatterers within the system’s resolution

cell, defined by the ambiguity function of the system (con-

sisting of the pulse, matched filter, and array processing)

(Abraham, 2019). If the scatterers can be assumed to be ran-

dom, and no coherent targets or target-like bottom features

(rather than diffuse reverberation) are present, then the pro-

cess can be assumed to be a multiplicative random process,

with the power of the scattered field scaling the speckle

component (Oliver and Quegan, 2004). The overall statistics

at any position in a SAS image can be expressed as the prod-

uct of speckle noise and the scaling due to the underlying

seafloor scattering cross section:

Yðr; xÞ ¼ aðr; xÞZðr; xÞ: (1)

In Eq. (1), Z(r, x) represents the speckle intensity field

for each pixel location in an image and a(r, x) represents a

modulating process that captures the effect of the random

roughness-induced intensity variation; r and x, respectively,

represent the down-range (or simply range) and cross-rangea)Electronic mail: anthony.lyons@unh.edu
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(or along-track) image dimensions. In Eq. (1), Y(r, x) is the

matched-filtered and beam-formed intensity, so that speckle

following a Rayleigh-distributed envelope would produce

an exponentially distributed intensity (Lyons and Abraham,

1999). As previously noted, the scaling function a(r, x) is

the acoustic expression of scattering from areas larger than

the system’s spatial resolution and is a function of the sea-

floor slope field. This scaling function is, effectively, a mod-

ulation of the scattering cross section, rsðhÞ, caused by local

grazing angle changes due to variations of seafloor slope,

which is treated as a random process. In previous work,

a(r, x) was treated as a deterministic process caused by

changes in slope due to ripples (Lyons et al., 2010). The

cross section term can be calculated via empirical or approxi-

mate models of seafloor interface scattering, such as

Lambert’s law (Lambert, 1760), perturbation theory (Kuo,

1964), or the small-slope approximation (Voronovich, 1985).

In Sec. II, we present a model based on the composite

roughness approximation [a combination of the Kirchhoff

approximation and perturbation theory (McDaniel and

Gorman, 1983)] which has been developed to predict the effect

of random, power-law, roughness on the overall SAS image

statistics. Changes in image statistics caused by roughness are

quantified in terms of the relative intensity variance, or scintil-

lation index (SI). Factors influencing the SI include the slope

variance, geo-acoustic properties of the seafloor, such as the

ratio of sediment sound speed to bottom water sound speed,

the probability density function describing the speckle, and the

signal-to-noise ratio. Note that we are treating the scattered

field from the seafloor as signal, and any additive components

that are incoherent with the signal are treated as noise, which

includes ambient noise and multipath contributions (Cook and

Brown, 2018; Johnson et al., 2009). Example model-data com-

parisons will be shown for three different SAS systems from

three different sites: (1) SAS images taken in 2010 off the coast

of Tellaro, Italy, by the NATO Undersea Research Centre, La

Spezia, Italy (now the NATO Centre for Maritime Research

and Experimentation) using the 300 kHz Minehunting

Unmanned underwater vehicle for Shallow water Covert

Littoral Expeditions (MUSCLE). SAS system (Bellettini and

Pinto, 2009); (2) data collected in 2013 off the northwest coast

of Elba Island, Italy, with the Norwegian Defence Research

Establishment’s (FFI) 100 kHz Hi resolution Interferometric

Synthetic Aperture Sonar (HISAS) system (Fossum et al.,
2008) mounted on a High-Precision Untethered Geosurvey

and Inspection system (HUGIN) autonomous underwater

vehicle (AUV) (Hagen et al., 1999); and (3) data collected in

2015 off the coast of northwest Florida, using the NSWC’s

experimental SAS system (Sternlicht et al., 2016).

Comparisons between parameter estimates obtained from

high-resolution SAS data collected in these experiments and

historical ground truth will be also used to illustrate the poten-

tial use of the model for estimating roughness parameters,

such as root mean square slope or height.

II. MODELING THE EFFECT OF RANDOM
ROUGHNESS ON IMAGE STATISTICS

For simplicity, we consider only the range dimension

when relating the seafloor slope field to image statistics.

This approximation is accurate to first-order in root mean

square (rms) slope, and this simplification was also per-

formed in previous literature on the composite roughness

approximation (Jackson et al., 1986). The geometry for our

problem is shown in Fig. 2, defining the true incident graz-

ing angle interrogated by the sonar system, h, the mean

grazing angle, h0, and the local slope angle, /. The scatter-

ing strength will vary about its mean value as a function of

range based on the relative (or local) grazing angle at a

given range. The concept of larger-scale slopes modulating

the scattering from smaller-scale roughness is the founda-

tion of the composite roughness theory for seafloor back-

scatter (Jackson et al., 1986; McDaniel and Gorman, 1983),

that has been used to predict the scattering cross section.

FIG. 1. Synthetic aperture sonar image of a randomly rough sandy seafloor

taken in 2015 off the coast of northwest Florida, using NSWC’s experimen-

tal SAS system. The increase in variability as a function of range caused by

random roughness is readily apparent in this image. Note that this and sub-

sequent images that appear in this article are displayed with 30 dB of

dynamic range.

FIG. 2. Geometry for the intensity-scaling problem. The rugged curve

denotes the seafloor height field and the flat horizontal line the mean sea-

floor height (assumed to be zero). The true grazing angle, h, of the incident

acoustic field, the mean grazing angle, h0, and the local slope angle, /, are

also denoted.

1364 J. Acoust. Soc. Am. 152 (3), September 2022 Lyons et al.

https://doi.org/10.1121/10.0013837

https://doi.org/10.1121/10.0013837


Here, we use the composite roughness model to compute

higher-order moments of the intensity. Based on Eq. (1), the

intensity function at any position in the image, Y(r, x), is the

product of speckle intensity and the scattering cross section

evaluated at the true grazing angle with respect to the sea-

floor, h ¼ h0 þ /, at range, r:

Yðr; xÞ ¼ rsðh0 þ /ÞZðr; xÞ; (2)

where rsðhÞ is the scattering cross section of the small-scale

roughness (within a resolution cell), / is the seafloor slope

angle with zero mean, and h0 is the nominal (flat-interface)

grazing angle at the range of interest. The small roughness

perturbation method is used for rs, and formulas, approxi-

mations, ranges of validity for this model can be found in

Jackson and Richardson (2007). In general, this model

should be valid for grazing angles and frequencies appropri-

ate for synthetic aperture sonar systems.

We quantify the changes in image statistics versus range

caused by random roughness in terms of the normalized

intensity variance, or scintillation index (SI) (Jackson and

Richardson, 2007). Higher values of SI are indicative of

heavier-tailed scattered amplitude distributions and a value

of 1 signifies a Rayleigh distribution. The scintillation index,

SIðrÞ ¼ m2 � m2
1

m2
1

; (3)

representative of the image statistics at a given range, can be

calculated in our case via knowledge of the intensity

moments, m1 and m2, of Y(r). Additive noise will also exist

for any realistic sonar system. As derived in Appendix A,

the SI of a measurement containing signal in the presence of

noise can be described as a modified form of Eq. (3):

SI0ðrÞ ¼ SIðrÞ þ ðdðrÞ2 þ 2dðrÞÞ
dðrÞ þ 1ð Þ2

: (4)

This formulation depends on the range-dependent noise-to-

signal power ratio, dðrÞ, which is equal to

dðrÞ ¼
r3rsðhnÞ exp 4k00wðr � H= sin ðhnÞÞ

� �
ðH= sin hnÞ3rsðhÞ

: (5)

The noise-to-signal power ratio is parameterized by the

equivalent noise angle, hn, the angle at which the noise term

and the seafloor scattering cross section are equal. Other

parameters in Eq. (5) are defined in Appendix A. This

parameterization allows us to cancel constant terms in the

sonar equation for signal and for noise. Local slope is

treated as a continuous variable to yield the intensity

moments in terms of formal expectations,

mn ¼ E Yn½ � ¼
ð ð

R

anZnfsð/ÞfKðZÞ d/ dZ; (6)

where fsð/Þ is the slope distribution, assumed to be

Gaussian with variance r2
g:

fsð/Þ ¼
1ffiffiffiffiffiffi

2p
p

rg

exp ð�/2=2r2
gÞ: (7)

Equation (6) results from using the high-frequency Kirchhoff

approximation on the large-scale roughness in a similar fashion

as in the composite roughness approximation. Equation (6) is

integrated over all slope (positive and negative). The Gaussian

assumption for slope follows from the assumption that the sea-

floor relief is a two-dimensional Gaussian random process as

has been assumed in previous texts (e.g., Jackson and

Richardson, 2007). Experimental evidence for the assumption

of a Gaussian distributed height field can be found in Berkson

and Matthews (2009) and Stanic et al. (1989). The underlying

speckle statistics are assumed to follow a K-distribution

(Abraham and Lyons, 2002; Jakeman, 1980),

fKðZÞ ¼
2

kCðaKÞ
Z

k

� � aK�1ð Þ=2

KaK�1 2

ffiffiffi
Z

k

r !
(8)

with shape parameter aK, scale parameter k, and mean

power aKk (which we normalize to 1 in our analysis). In

Eq. (8), K is the Basset or MacDonald function (i.e., a modi-

fied Bessel function of the second kind) (Oldham et al.,
2009) and C is the gamma function. Note that Eq. (8)

describes K-distributed intensity values which differs from

the form found in other articles referenced in this paper

(Abraham and Lyons, 2002; Lyons and Abraham, 1999;

Lyons et al., 2009; Lyons et al., 2010), which describe K-

distributed envelope values. Converting from intensity to

envelope would result in the same functional form as given

in other references. The shape parameter allows the distribu-

tion to provide good fit to a wide range of data. As aK tends

to infinity, the K-distribution tends to a Rayleigh-distributed

envelope.

This framework for modeling intensity statistics is simi-

lar in spirit to the procedure outlined in Hellequin et al.
(2003) who looked at the effects of random seafloor slope

on the angular response of multibeam sonar backscatter sta-

tistics. We differ from that study, however, in that we per-

form a numerical integration of the moments in Eq. (3) via

Eq. (6) (which only requires a numerical evaluation of the

integral over / as for the similar derivation given in Lyons

et al. (2010). We also use perturbation theory (Jackson and

Richardson, 2007) instead of making an assumption that

scattering strength versus grazing angle follows the empiri-

cal Lambert’s law (Lambert, 1760). The effects of using the

more realistic scattering theory will be examined in Sec. III.

Also, of note are previous efforts (Lyons et al., 2016; Lyons

et al., 2013) that use this basic framework, but do not

include the effect of noise, nor test for suitability of the K

distribution for the unmodulated envelope probability den-

sity function (pdf). We also note the recent work of Olson

and Lyons (2021) which used numerical simulations to

study the effect of slope modulation on scattering from one-

dimensional surfaces. Using the integral equation technique,

which is essentially an exact result, Olson and Lyons (2021)
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demonstrated that intensity fluctuations from a stationary

rough surface with Gaussian statistics were due in large part

to slope modulations.

We do not include in our modeling, but acknowledge

that for very small grazing angles, multiple scattering and

shadowing can become important (Liszka and McCoy,

1982). Multiple scattering may become important when the

grazing angles are comparable to twice the rms slope and for

shadowing when the grazing angle is comparable to the rms

slope (Thorsos, 1988). Additionally, volume scattering is

often an important contributor to seafloor scattering (Jackson

and Richardson, 2007), but is ignored here since our focus in

this work is for frequencies on the order of 100 kHz and low

grazing angles. For acoustically softer sediments, such as

silts and clays (i.e., those without a critical angle), volume

scattering may be an important factor to include in any

modeling as it may diminish the effects described in this

paper depending on the level of volume scatter.

From the previous equations in this section, if a(r) is

constant, then the measured SI is that of the underlying dis-

tribution. The underlying speckle may itself be non-Rayleigh

as noted in Lyons et al. (2010), which is observed in the

images that appear in this article in regions where there is no

expected modulation due to the random slope fields (moder-

ate grazing angles where scattering strength is fairly constant

as a function of angle). If a(r) is not constant, then the

image-level statistics will have a scintillation index greater

than that of the underlying distribution. At long ranges (cor-

responding to small grazing angles), the signal produced by

scattering from the seafloor may be small compared with

additive noise, and SI will then be dominated by the dðrÞ
terms. For this case of Gaussian additive noise, the SI asymp-

totically approaches unity. It should also be noted that when

comparing these results to real data, system calibration is not

necessary because any system dependent parameters, such as

vertical beam pattern, would appear in both the numerator

and denominator of Eq. (3) for a given range.

III. APPLICATION TO REAL SAS IMAGES

Having established a theoretical framework within

which to interpret the effects of roughness-induced intensity

scaling of the underlying speckle on the statistics of SAS

images, we next investigate the applicability of these results

by comparison to three datasets. Our first comparison is to an

image collected with the 100 kHz HISAS system (Saebo

et al., 2007), taken off of Elba Island, Italy, in 2013. The sec-

ond comparison is to an image collected with the 300 kHz

MUSCLE SAS (Bellettini and Pinto, 2009), taken off the

coast of Tellaro, Italy, in 2010. The third comparison is to an

image collected using experimental SAS system (Sternlicht

et al., 2016) obtained off the northwest coast of Florida. The

SI estimated from each image is compared to predictions

based on the scaled-speckle model developed in Sec. II,

namely Eq. (4). The MUSCLE SAS transmitted 60 kHz band-

width signals at a center frequency of 300 kHz and the HISAS

system transmitted 30 kHz bandwidth signals at a center

frequency of 100 kHz. Images formed from the collected

MUSCLE data had a resolution of approximately 1.5 cm in

range � 2.5 cm along-track and images formed with HISAS

data had a resolution of approximately 3.5 cm � 3.5 cm. The

NSWC system produced data of similar resolution (i.e., on

the order of cm) to both the HISAS and MUSCLE systems.

The data from all three of the sites used for model-data

comparisons were obtained on uniform and homogeneous

seafloor areas of fine sands with varying degrees of topo-

graphic roughness, with the Elba experiment conducted in

approximately 42 m water depth, the Tellaro experiment in

17 m water depth, and the Florida experiment in approxi-

mately 16 m water depth. Although multipath, if present,

would impact estimates of SI, multipath was not an issue for

the datasets examined as part of this work. Additionally,

multipath would mimic additive noise causing estimates if

SI to tend back toward smaller values, an effect that we cap-

ture via Eq. (4) and Eq. (5). To isolate the effect of rough-

ness changes in our model-data comparisons, SAS images

were chosen with little or no variability within an image due

to changes in sediment geo-acoustic properties. Image selec-

tion was accomplished by visual inspection of the image at

moderate grazing angles where the scattering cross section

is insensitive to small changes in grazing angle (as discussed

in Appendix B). Areas very close to the specular direction

were excluded, due to the rapid variation in scattering

strength with angle, as well as beam pattern sidelobe arti-

facts in that region.

Geo-acoustic input parameters for the perturbation

theory-based model for the same general vicinity as the Elba

Island HISAS data collection site were published in Maguer

et al. (2000) and Lyons et al. (2009). Inputs to the scattering

model used for comparisons with the MUSCLE SAS data

are from Pouliquen and Lyons (2002) and were obtained

close to the location off of Tellaro, Italy, where the SAS

image data were obtained, and at the same water depth.

Inputs to the model used for the northwest Florida dataset

were from Williams et al. (2009). The perturbation-theory

scattering model used in the SI model requires a roughness

power spectrum as input, and we use the power-law form,

WðkÞ ¼ bk�c; (9)

which has been found to provide a good fit to a wide range

of seafloor roughness measurements (Jackson and

Richardson, 2007). In this equation, k is a two-dimensional

wave vector with magnitude k ¼ jkj, b is the spectral

strength parameter, and c is the spectral slope parameter.

The seafloor slope variance over the scale of a SAS image

used in Eq. (7) can be obtained by integrating the power-law

roughness slope spectrum between an outer scale kL, and an

inner scale kc, as outlined in Jackson et al. (1986)

r2
g ¼ 2p

ðkc

kL

WðkÞk3dk; (10)

where kc ¼ 2p=dx is inversely related to the smallest scale

in the image, dx (i.e., dx is the sonar resolution or pixel size
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if the image is not oversampled), and kL is inversely related

to the largest scale in the image (i.e., the total along-track

distance of an image as we will calculate SI on individual

range lines). Note that Jackson et al. (1986) uses a different

form of the slope pdf than our Eq. (7). Assuming isotropy

yields

r2
g ¼

2pb
4� c

ðk4�c
c � k4�c

L Þ: (11)

Note that the rms slope depends both on the sonar resolution

and the image size, although it is less sensitive to image

size, since kc is typically much larger than kL. Shape param-

eters are estimated from the data as outlined in Appendix B.

For the comparisons that follow, we hold the spectral

slope, c, constant and vary the spectral strength, b, as a free

parameter to fit SI versus range. The noise parameter, hn is

also fit to the data. The dependence of SI on range allows us

to fit the rms slope (via) in an unambiguous fashion via the

following steps:

• Estimate the free parameters in the K-distribution from

the near range image part that has relatively larger grazing

angles and is the most unaffected by slope modulation.
• Estimate b (and therefore rg) by matching the theoretical

model to the data, Eq. (3) ignoring noise, using moderate

ranges where SI increases. Eq. (6) is numerically solved

during this fit.
• The additive noise parameter, hn, is estimated by match-

ing the long-range data, where SI tends to flatten with

range.

Table I gives parameters used in estimating SI for each

of the study sites. In this table, q is the sediment-water den-

sity ratio, � is the sediment-water sound speed ratio, and g is

the loss parameter of the sediment, defined as the ratio of

the imaginary to real components of the wavenumber in the

sediment. The complex sound speed ratio is �=ð1þ igÞ.
More detailed descriptions of these geo-acoustic parameters

can be found in Jackson and Richardson (2007).

Figure 3 shows a SAS image and estimates of SI versus

range for the HISAS Elba Island dataset. Each SI estimate

in range was formed for a single range line only, i.e., there

is no sharing of data across range cells. The experimental SI

versus range estimates have had outliers removed and have

been smoothed with a 21-point averaging window. The out-

lier filter simply compares each data point to a local average

and removes the data point (without replacement) if the dif-

ference between the two is greater than a given threshold (a

threshold of 1 was used in our analysis). The SI versus range

estimates with outliers removed and then smoothed were

then used to fit the model presented in Sec. II for model-data

comparisons. Given that 21 points in range represent only a

small change in angle, smoothing is expected to have little

effect on model fits. The SI is seen to increase dramatically

as a function of range (i.e., increase as the mean grazing

angle decreases from approximately 22� at 40 m range to

approximately 6� at 150 m range). Although it is the non-

Rayleigh speckle statistics that cause the value nearer nadir

to be larger than 1, it should be noted that it is not the under-

lying speckle statistics that are the dominant cause in the

TABLE I. Parameters used for model-data comparisons. Rms slope is cal-

culated from the roughness parameters b and c.

Site aK hn q � g b c hg

NW Elba Island 4.0 0.0 1.87 1.12 0.01 2� 10�5 3.25 4:9�

Tellaro 2.3 2.8 1.85 1.10 0.01 2� 10�5 3.25 4:5�

NW Florida 7.9 0.0 1.78 1.16 0.01 7� 10�4 3.25 3:3�

FIG. 3. Top: Sample HISAS image collected at Elba Island. Bottom: SI

estimated from the HISAS data (thin solid line) compared with a prediction

made using the perturbation-theory–based model for the scattering cross

section in the scaled-speckle model (thick dashed line). The prediction

made using the Lambertian scattering model with the same rms slope as for

perturbation-theory–based model is also plotted (thick solid line).
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overall increase in the SI versus range, but the increasing

slope of the scattering cross section versus grazing angle at

further ranges (or smaller grazing angles). We also note here

that with the implicit assumption that the seafloor height

field is isotropic and statistically stationary, there will be no

dependence of SI on the azimuthal look direction of the

sonar system.

An illustration of this effect for various seafloor classes

is shown in Fig. 4. The top figure shows scattering strength

as a function of grazing angle for various sediment types,

whereas the bottom plot shows the absolute value of the gra-

dient of the backscattering strength. The input parameters to

this model were based on recommendations from Jackson

(2000) and Richardson and Jackson (2017). Volume scatter-

ing is included in each of the curves but contributes insignif-

icantly to the scattering strength curve, except for silt. To

compare with our work, the medium sand parameters from

this figure are closest to the geoacoustic parameters used for

the model-data comparisons presented in Figs. 3 and 5–8.

Taking the gradient of the logarithm of the scattering cross

section results in an estimate of the gradient of the cross sec-

tion results divided by the cross section, which is the impor-

tant parameter for this work. Different seafloor types have

relatively consistent, small gradients at moderate grazing

angles, and all increase dramatically at small angles.

The scaled-speckle model developed in the Sec. II was

used to predict the SI using the rms seafloor slope as a free

parameter and was fit to the experimental estimates of SI

using known system geometries. A K-distribution shape

parameter value of 4.0 and equivalent noise angle of 0 was

used in the model calculation for this comparison. The val-

ues of SI at the smallest ranges in Fig. 3 (i.e., with the larg-

est mean grazing angles), where scattering strength is close

to constant as a function of angle, are almost solely pro-

duced by the speckle statistics. An rms slope value of 4.9�

was found to provide the best fit to the experimental data

displayed in Fig. 3.

To illustrate the effect of the choice of scattering model,

SI was also calculated with the empirical Lambertian scat-

tering model. The model results displayed in Fig. 3 show

that SI increases much more quickly as range increases (as

grazing angle decreases) for predictions based on perturba-

tion theory than for the Lambertian model. The intensity

variability seen in an image at a specific range is directly

related to the shape of the scattering strength curve, i.e., the

rate of change (and higher-order derivatives) of scattering

strength as a function of angle. The approximately sin4

dependence of scattering strength versus grazing angle at

low angles for perturbation theory yields a larger SI for

smaller grazing angles than the Lambertian case (with the

same rms slope) while the relatively constant scattering

strength versus angle near the critical angle of 27� yields a

flatter curve of lower SI equal to that of the underlying

speckle.

The dominant factors affecting the SI versus range are

the K-distribution shape parameter of the speckle and the

rms seafloor slope (which we parameterize using the spec-

tral strength). Figures 5 and 6 display the impact of these

FIG. 4. A plot of the scattering

strength predicted for various sediment

types as a function of grazing angle

(top), and the magnitude of the slope

of the scattering strength, expressed in

dB/degree.
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two parameters on SI. In these figures, comparisons are

made with the same HISAS-derived SI estimate versus

range as displayed in Fig. 3. In Fig. 5, the shape parameter

is varied and rms slope held constant. It can be seen in

Fig. 5 that the influence of the shape parameter on SI asymp-

totes relatively quickly to having little impact as shape

parameter increases. In Fig. 6, the shape parameter is held

constant, while rms slope is varied. Changes in shape

parameter for the most part only shift the SI versus range

curve in its entirety to higher or lower values, while the

spectral strength (or, equivalently rms seafloor slope)

changes the slope of the SI versus range curve, which

appears to reach an asymptote. The dependence of the SI

curve at close ranges on the shape parameter (as discussed

in Appendix B) is evident when considering Figs. 5 and 6.

The second dataset used to explore the effects of

random roughness on SAS image statistics consisted of data

taken in 2010 off the coast of Tellaro, Italy. An example

image is shown in Fig. 7. The SAS image in Fig. 7 clearly

displays more large-scale variation in intensity from about

90 m in range onwards than the images in Fig. 1 or Fig. 3,

which is caused in this case by larger undulations in seafloor

slope. These very-large-scale topographic undulations (and

associated intensity variation) are not accounted for in our

model. The bottom plot in Fig. 7 shows estimates of SI ver-

sus range estimated from the MUSCLE dataset that were

used to form the image shown in Fig. 7. As for the Elba

Island HISAS data, the SI is seen to increase as a function of

range away from the sonar (i.e., SI increases as the mean

grazing angle decreases from approximately 14� at 40 m

range to approximately 4� at 145 m range). The large fluctua-

tions in the SI seen in this figure are due to tilting of the

large-scale slope toward and away (along with some subse-

quent shadowing) from the sonar. It should be noted here

that large-scale intensity fluctuations in SAS imagery may

also be caused by refractive effects caused by internal wave

related features as recently noted by (Hansen et al., 2015).

The effects on the SAS image statistics caused by these types

of intensity fluctuations would be indistinguishable from

those caused by large-scale topographic slope variation.

One aspect that appears in the measured SI for the

Tellaro data that was not seen in the HISAS data shown in

Fig. 3 is a flattening of the curve at larger ranges. This effect

FIG. 5. Same as Fig. 3 but with models run using various values of the

shape parameter (all other parameters remain as given in Table I).

FIG. 6. Same as Fig. 3 but with models run using various values of the

roughness spectrum strength parameter (all other parameters remain as

given in Table I). Values of rms slope assuming power-law roughness are

given in parentheses after the spectral strength value on each curve.

FIG. 7. Top: Sample MUSCLE image collected at Tellaro, Italy. Bottom:

SI estimated from the MUSCLE data (thin solid line) compared with a pre-

diction made using the perturbation-theory–based model for the scattering

cross section in the scaled-speckle model (thick dashed line).
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is caused by a loss of signal-to-noise ratio at far ranges (or

in areas dominated by shadows) which drives the SI toward

lower values (i.e., in the direction of the SI for a Rayleigh

distribution) as Gaussian additive noise begins to have an

impact on the sample distribution. The noise angle, defined

as the angle at which the noise term and the seafloor scatter-

ing cross section are equal, was set to 2.8� for the compari-

son shown in Fig. 7 (an equivalent range of approximately

200 m).

For our third example dataset, we show results for data

taken with the NSWC system off the northwest coast of

Florida. Measured and modeled SI for this site (and system)

are shown in Fig. 8. In this example, both port and starboard

data and model results are given and agree with the previous

two datasets in showing a rapid increase in SI versus range.

The two-sided results shown in this figure highlight another

interesting aspect of roughness-induced SI versus range; the

asymmetry caused by a tilt angle of the sonar collecting the

SAS data with respect to the seafloor. This tilt can be caused

by either a tilt in the vehicle housing the port and starboard

sonar systems or a slight image-wide slope in the seafloor.

For the comparison shown in Fig. 8, we have included a 0.5�

relative tilt between the sonars and the seafloor in the model.

Roughness values are often reported in terms of rms

roughness (over a specified length or area). These values

can be compared to the values resulting from our model-

data fitting to lend confidence in our methods. Statistical

properties of the seafloor roughness, such as rms height and

slope, can be related if a model of seafloor roughness is

assumed. If a seafloor exhibits power-law roughness spectra

(as the model developed here does), rms height, h, can be

obtained from rms slope as outlined in Jackson et al. (1986),

h ¼ 2pb
2� c

k2�c
c � k2�c

L

� �	 
1=2

: (12)

Under the assumption of power-law roughness, the rms sea-

floor height was found to be to 7 cm for the Elba Island,

Italy, dataset, 5 cm for the Tellaro, Italy, dataset, and 2.4 cm

for the northwest Florida dataset. For self-affine surfaces,

such as those described by a power law, surface measures,

such as rms height or roughness, h, will depend on largest

observation length, l, and obey a scaling relationship of the

form (Summers et al., 2007)

hðlÞ ¼ hðl0Þðl=l0Þðc�2Þ=2: (13)

Jackson and Richardson (2007) presented stereo-

photogrammetry–based measurements of rms roughness of

0.2–1.0 cm for fine and medium sands measured over scales

on the order of 1 m. Using Eq. (7) with a spectral exponent

of 3 (approximate value for fine and medium sands is based

on Table VI.1 in Jackson and Richardson (2007)], these his-

torical values of h would yield rms roughness values mea-

surements of approximately 2.5–12 cm over the much larger

50–150 m scale of the SAS images, values which bracket

the 2.5–7 cm rms roughness predicted by the scaled-speckle

model for the three sites presented in this study. Seafloor

roughness data measured by divers or estimated via stereo

photogrammetry methods at Elba Island, Italy (Maguer

et al., 2000), Tellaro, Italy (Pouliquen and Lyons, 2002),

and northwest Florida (Williams et al., 2009), all close to

the sites of the data presented in this paper, reported rms

roughness on the order of what our results suggest via fitting

of the SI model (i.e., on the order of 3–10 cm). Although

roughness will not be temporally constant, the mechanisms

generating roughness at a given location (and depth) with

given sediment properties (e.g., grain size) may be relatively

stable. The relative agreement between reported roughness

values and our own estimates suggests that the parameters

that best fit the data presented here are reasonable. This

model could potentially be used over larger areas to invert

for seafloor roughness properties, which are useful for

hydrodynamic modeling, sediment transport, and acoustic

reverberation–an important component of sonar perfor-

mance models.

IV. CONCLUSIONS

In this work, we have presented a model to predict the

impact of random seafloor roughness on SAS image statis-

tics. In the model that was developed, the variations in scat-

tering strength produced by changes in seafloor slope were

treated as a scaling of the coherent imaging speckle

FIG. 8. Top: Sample image collected with NSWC’s experimental SAS sys-

tem off of Florida. Bottom: SI estimated from the NSWC data (thin solid

line) compared with a prediction made using the perturbation-theory–based

model for the scattering cross section in the scaled-speckle model (thick

dashed line).

1370 J. Acoust. Soc. Am. 152 (3), September 2022 Lyons et al.

https://doi.org/10.1121/10.0013837

https://doi.org/10.1121/10.0013837


produced by a synthetic aperture sonar. The changes in

image statistics were quantified in terms of a common com-

plexity metric, the SI. For the three experimental datasets

examined, roughness caused a dramatic effect on the statis-

tics of the images, with increasingly larger SI (i.e., heavier-

tailed distributions) as range away from the sonar increased.

SI estimates from SAS data showed good agreement with

model predictions, showing sensitivity to the roughness

spectral strength (i.e., the mean square slope). This sensi-

tivity could allow seafloor roughness parameters, such as

rms roughness, to be inverted from SAS image data as in

Chen et al. (2015). The range dependence of the effects

of roughness on image statistics should also be considered

when setting thresholds in automatic target recognition

(ATR) detectors and when using scintillation-related met-

rics for seafloor characterization or image segmentation

(e.g., those which use lacunarity (Williams, 2015), which

is equivalent to scintillation index when using intensity

values). Last, as the effect of the seafloor slope distribu-

tion on image statistics should increase with range, a trend

back toward a value of 1, or even a flattening of the SI

curve (as seen in Fig. 7) will be an indication of a lessen-

ing of image quality as noise effects begin to affect the

image.
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APPENDIX A: RANGE-DEPENDENT
SIGNAL-TO-NOISE RATIO

To deal with the effect of noise, we consider the sum of

two independent complex random variables U and V. We

treat the seafloor return at any range, r, as V, and the addi-

tive noise component as U, and assume its real and imagi-

nary parts are independent Gaussian random variables (i.e.,

are complex-Gaussian distributed). The SI of the sum of

these two random variables can be calculated using Eqs. (6)

and (8) from Lyons et al. (2009)

SI0 ¼ m2U þ m2V þ 4m1Um1V � m1U þ m1Vð Þ2

m1U þ m1Vð Þ2
; (A1)

where m1X ¼ E½jXj2� is the first moment of the intensity

(second moment of pressure) of random variable X, and

m2X ¼ E½jXj4� is the second moment of intensity (fourth

moment of pressure). If we assume that U has Gaussian real

and imaginary components, then m2U ¼ 2m2
1U (Lyons et al.,

2009). We introduce the noise-to-signal power ratio,

d ¼ m1U=m1V , and are therefore able to express all the U
moments in terms of moment of V. Performing these substi-

tutions results in the modified SI

SI0 ¼ m2V � m2
1V þ m2

1V d2 þ 2dð Þ
m2

1V dþ 1ð Þ2
; (A2)

which can be rewritten in terms of the SI without noise, i.e.,

Eq. (3) as

SI0 ¼ SIðrÞ þ ðd2 þ 2dÞ
dþ 1ð Þ2

: (A3)

As a check on these results, we examine three limits.

First, the limit of d! 0 is when noise is completely absent.

This results in the original formula for the SI of V, which it

should. Second, we examine d!1, where the signal is

only Gaussian noise. This results in a SI of unity, which is

expected. Third, we examine the case where V has Gaussian

real and imaginary components. In this case, the SI is unity

independently of d, which is what is expected when two

complex circular Gaussian random variables are summed.

To model the noise to signal power, d, we use the sonar

equation for synthetic aperture sonar received signal inten-

sity (Cook and Brown, 2018; Massonnet and Souyris, 2008;

Olson et al., 2016)

IS ¼
CsAre�4k00wrrsðhðrÞÞ

r4
G; (A4)

where Cs includes all constant terms in the sonar equation for

the seafloor signal (including source transmit power and ele-

ment gains), r is the slant range to a given pixel, rs is the scat-

tering cross section, A is the ensonified area, G is the increase

in signal power after synthetic aperture array beamforming,

and k00w is the imaginary part of the complex wavenumber in

water. For SAS, A is constant as a function of rang, (except

for a weak 1= cos h dependence which we ignore at small

angles), and G is proportional to r2, since the number of ele-

ments for a given pixel is proportional to range. The image

noise intensity, IN, is given by IN ¼ CnInr, where In is the

noise intensity at a hydrophone (assumed constant and isotro-

pic), and the factor of r is due to the increase in noise power

after SAS processing. The constant Cn takes into account con-

stant factors in the noise sonar equation, such as the synthetic

aperture weighting function [e.g., Hamming or other apodiza-

tion function (Harris, 1978)]. Combining the constant terms

into a single constant, C, we obtain
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dðrÞ ¼ Inr

CrsðhðrÞÞr�2e�4k00wr
: (A5)

Although d is dimensionless, it depends on range. A

convenient way to capture this range dependence is to define

an angle at which d is unity, that is when the signal and

noise power are equal. From the vehicle altitude H, we may

also define a range at which this occurs, rn ¼ H= sin hn.

Thus, we have

1 ¼ Inr3
n

CrsðhnÞe�4k00wrn
: (A6)

Solving for In and inserting into Eq. (A5), we obtain

d ¼ r3rsðhnÞe�4k00wrn

r3
nrsðhÞe�4k00wr

(A7)

¼
r3rsðhnÞ exp 4k00wðr � H= sin ðhnÞÞ

� �
ðH= sin hnÞ3rsðhÞ

: (A8)

Thus, we may calculate SI using Eqs. (A3) and (A8).

APPENDIX B: SPECKLE PARAMETER ESTIMATION

The scaled-speckle model developed in this work

requires estimates of the parameters of the K-distribution for

the speckle component without the influence of a modulat-

ing slope field. For normalized data, the K-distribution

model requires only that the shape parameter be estimated.

In SAS images, a region usually exists close to nadir that is

minimally influenced by seafloor slopes, and which there-

fore appears in the images as a region of low contrast or low

texture. This low-contrast, low-texture region exists because

the shape of the scattering strength versus grazing angle

curve is relatively flat for angles higher than about 15� (i.e.,

areas closer to nadir, but not near the specular direction).

This area of low texture at close ranges (corresponding to

moderate grazing angles) can be seen in Fig. 1 at a range of

approximately 5–15 m. SAS images at angles very close to

nadir have greater contrast due to the large gradient in scat-

tering strength with angle near the specular direction

(Jackson and Richardson, 2007), as well as beam-pattern

artifacts. With the assumption of no impact of the slope field

at near ranges in SAS imagery, it is possible to use data

from this region to estimate the speckle shape parameter.

We acknowledge that there will be some small influence

of the slope field on the shape parameter at near ranges that

cannot be removed. In fact, numerical tests in (Olson and

Lyons, 2021) for pressure-release surfaces revealed that for

very high bandwidth pulses (comparable to the center fre-

quency and bandwidth of HISAS data examined here), SI is

greater than 1 for both moderate and small grazing angles.

The impact of this influence will be to slightly reduce the rms

slope that is used in fitting the model to experimental data.

Before parameter estimation, the data in each image

were normalized in the range direction to a mean power of 1

to remove the large-scale effects of spreading loss, absorption,

and transmit and receive beam patterns. As neighboring data

values showed slight correlation, that data were also deci-

mated by a factor of two by using every other pixel in a range

line to obtain independent samples. The shape parameter was

then estimated range line by range line for 150 lines of data

(which amounted to between approximately 2 and 5 m of the

data closest to nadir, but away from visible beam pattern arti-

facts, depending on the SAS system). Estimation of the shape

parameter was carried out using a common statistical estima-

tion method, the method of moments, which uses the first and

second sample moments (Joughin et al., 1993; Abraham and

Lyons, 2010).

To evaluate the validity of the fit of the K-distribution

to the experimental data, non-parametric Kolmogorov–

Smirnoff (KS) test statistic p-values (Papoulis and Pillai,

2002) were used to compare theoretical and observed

exceedance distribution functions (EDFs), which are defined

as one minus the cumulative distribution function (CDF).

Sample EDFs for the Tellaro site are shown in Fig. 9 as a

function of normalized envelope amplitude. EDFs from

individual range lines are shown on the figure (thin gray

lines) along with their median (thick black line) and com-

pared with both the Rayleigh and K-distribution model

EDFs (thick dashed line and thick solid line, respectively).

The K-distribution shape parameter used in the model fit is

the median value of shape parameter found for all the EDFs.

Qualitatively from Fig. 9, the K-distribution model provides

a good fit to the SAS data (and a much better fit than the

Rayleigh distribution). The results for the other two sites

were similar to those seen in Fig. 9. The top plot in Fig. 10

shows shape parameter estimates for the 150 range lines of

data closest to nadir (excluding the specular region) for the

three sample sites (and systems), with the median values

shown as solid lines.

FIG. 9. Example exceedance distribution functions (EDFs) for the 150 clos-

est-to-nadir lines from the same MUSCLE dataset as that shown in the SAS

image in Fig. 7. EDFs from individual range lines are shown on the figure

(thin gray lines) along with their median (thick black line) and compared

with both the Rayleigh and K-distribution model EDFs (thick dashed line

and thick solid line, respectively).
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The KS test statistic, D, is the maximum absolute error

between the sample and model EDFs evaluated over the

region where the sample EDF is greater than 10=n (i.e.,

where the EDF has greater accuracy (Preston and Abraham,

2015) and is given by

d ¼ max
i¼1;…;n�10

j 1� FYðYðiÞÞÞ
� �

� ðn� iþ 1Þ=n½ �j; (B1)

where FYðYðiÞÞ is the model CDF being tested, with YðiÞ
being the ordered samples of the echo intensity, and the sec-

ond term within the absolute value signs representing the

sample EDF evaluated at the ith ordered sample. The p-

value is the probability of observing a value greater than d
under the null hypothesis–the data are distributed according

to FYðYðiÞÞ. The p-value of d is utilized to compare the

results of the KS test. The p-value is the probability of

observing a value greater than d under the null hypothesis;

i.e., if d is the observed KS test statistic and D is the random

variable formed by Eq. (B1) using the random variable Y
distributed according to FYðYðiÞ, then the p-value is

p ¼ PrðD � dÞ: (B2)

When the p-value is small, observing a more extreme value

for the KS test statistic is not likely under the null hypothe-

sis, and therefore the data do not follow the hypothesized

CDF. Likewise, when the p-value is large, the maximum

absolute difference between the model CDF and the sample

CDF is small, and it is unlikely that the model distribution

does not provide a good fit to the data. The bottom plot in

Fig. 10 shows the p-values for the 150 range lines of data

closest to nadir for the three sample sites along with the

p ¼ 0.05 criteria for acceptance shown as a dashed line. The

K-distribution was accepted at each site as the median

p-value for each of the sites was approximately 0.75.
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