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Abstract: This paper considers the problem of collision avoidance for surface vehicles moving
under the influence of ocean currents. The vehicles we consider have underactuated dynamics,
where the vehicle cannot directly control its lateral motion, which is a common trait of
marine vehicles. We propose a reactive algorithm where the vehicle dynamics, including its
underactuation and the effects of an ocean current disturbance, are handled directly in the
avoidance strategy. Moreover, the algorithm only requires a limited amount of information
about the obstacle and is proven to guarantee collision avoidance, as well as the completion of
a nominal goal, under explicitly derived conditions. The theory is validated by simulations.
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1. INTRODUCTION

Autonomous marine vehicles present a large potential for
the future. During missions, it is essential that the vehicle
is able to avoid collisions with unforeseen obstacles. This
may be enabled by implementing a local navigation algo-
rithm that takes over the control in emergency situations.
However, even in nominal conditions, collision avoidance
is not trivially achieved since marine vehicles generally
lack control forces in the lateral direction. Moreover, un-
like nonholonomic robots such as unicycles, marine vehi-
cles will glide side-wise during turning maneuvers. In the
presence of ocean currents, the control problem becomes
even more challenging, as the current will directly affect
the maneuverability of the vehicle, as well as present a
kinematic bias influencing the vehicle velocity.

Reactive methods are important for handling unexpected
events during missions, when a planning algorithm may
be too slow, and can be used as the main navigation
strategy in vehicles with too low computational power to
perform planning. Existing approaches for reactive colli-
sion avoidance include the potential field method (Khatib,
1985), the dynamic window approach (Fox et al., 1997),
the collision cone approach (Chakravarthy and Ghose,
1998), the constant avoidance angle algorithm (Wiig et al.,
2020), velocity obstacles (Fiorini and Shiller, 1998), and
control barrier functions (CBFs) (Ames et al., 2019). It is
well-known that potential field methods have drawbacks
with local minimima and oscillations as shown in Koren
and Borenstein (1991). The dynamic window approach
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and CBFs are optimization-based and may therefore be
too computationally heavy for the vehicle to perform.
The remaining approaches are similar in that they are
fundamentally based on the collision cone concept, which
is both intuitive and computationally advantageous.

In this paper, we present a switching control algorithm
that will enable an underactuated surface vehicle to com-
plete its mission goal while avoiding collision with a dy-
namic obstacle, in the presence of ocean currents. The
collision cone concept is used to generate safe references for
the vehicle when a collision is imminent, which will tem-
porarily take the vehicle away from its nominal objective.
Although a similar concept has been applied to marine ve-
hicles with underactuated dynamics in Wiig et al. (2020);
Haraldsen et al. (2020), we here present an algorithm that
also takes into account the effect of an ocean current dis-
turbance, something which is rarely addressed in previous
studies on marine collision avoidance. This is a significant
lack, as ocean currents constitute a common disturbance
which can significantly affect the vehicle maneuvers and
overall stability. Therefore, we present a method that guar-
antees avoidance despite the additional difficulty of having
an ocean current acting on the vehicle during its evasive
maneuvers, under explicit conditions dependent on the
strength of the current. Moreover, we show that a stronger
current not only raises the requirement on the forward
speed of the vehicle but also on its ability to change course,
and we specifically consider these and similar effects in
the design and underlying analysis of the algorithm. The
theoretical results are validated by simulations.

The paper is organized as follows. The modeling of the
marine vehicle and the ocean current disturbance is pre-
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sented in Section 2. The control objectives are formulated
in Section 3, and the obstacle modeling is presented in
Section 4. The guidance algorithm that generates safe
vehicle course directions is described in Section 5, and the
control system that makes the vehicle keep the correct
course is presented in Section 6. The overall system is
analysed in Section 7, and simulations are provided in
Section 8. Some concluding remarks are given in the last
section.

2. CONTROL MODEL

We describe the horizontal motion of a marine vehicle
using a maneuvering model (Fossen, 2011). We first state
the model assumptions and present the modeling of the
ocean current disturbance. Then we present the equations
of motion in matrix-vector form, before giving the equa-
tions in component form.

2.1 Vehicle Assumptions

Assumption 1. The dynamics of the vehicle can be de-
scribed in 3 degrees of freedom. That is, in the surge, sway,
and yaw directions.

Assumption 2. The vehicle is port-starboard symmetric,
and the origin of the body-fixed reference frame b is located
at the center-line of the vehicle.

Assumption 3. The hydrodynamic damping is linear.

Remark 1. Hydrodynamic nonlinear damping is not in-
cluded to reduce the model complexity, as the nonlinear
damping terms are passive and should only enhance the
directional stability of the craft.

Assumption 4. The origin of the body frame is located at
the pivot point of the vehicle.

Remark 2. If the origin is not originally located at the
pivot point, it is always possible to translate the origin
to this point when the vessel is port-starboard symmet-
ric (Fredriksen and Pettersen, 2004).

2.2 Ocean Current Disturbance

The effect of an ocean current is embodied in the vector

νc ≜ [uc, vc, rc]
T
. (1)

The state νc represents the velocity of the ocean current
expressed in the vehicle-fixed reference frame b, where uc

and vc are the velocities in the surge and sway directions
and rc is the angular rate. The ocean current directly
impacts the velocity of the vehicle along these axes.

Assumption 5. The ocean current is known, and it is
considered to be constant and irrotational with respect to

the inertial reference frame, defined as Vc ≜ [Vx, Vy, 0]
T
.

Moreover, there exists a positive constant Vmax such that√
V 2
x + V 2

y ≤ Vmax. (2)

Remark 3. Knowledge of Vc can be obtained through an
observer or directly from sensors such as an acoustic
Doppler current profiler.

The ocean current in i is related to νc by the relation
νc ≜ RT (ψb)Vc, where ψb is the orientation of the vehicle-
fixed frame with respect to the inertial frame and

R(ψ) ≜

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (3)

2.3 Vehicle Equations of Motion

The state of the vehicle, [ηT
b , ν

T
b ]

T , describes the vehicle
position and orientation and the linear and angular veloc-
ities. The position and orientation vector, ηb ≜ [pT

b , ψb]
T ,

is defined with respect to the inertial frame i, where pb ≜
[xb, yb]

T
. The body velocity vector, νb ≜ [ub, vb, rb]

T
, is

expressed in the body frame b, where ub is the surge speed,
vb is the sway speed, and rb is the yaw rate. In the presence
of ocean currents, it is useful to express the velocity of
the vehicle with respect to the current as νr ≜ νb −
νc = [ur, vr, rb]

T
. The vessel equations of motion then

take the form (Fossen, 2011):

η̇b = R(ψb)νr + Vc, (4a)

Mν̇r +C(νr)νr +Dνr = Bf . (4b)

It can be noticed that the ocean current acts as a kine-
matic bias in (4a) and consequently influences the linear

vehicle velocity in i, vb ≜ ṗb, and thus the course of
the vehicle, denoted as ψf ≜ atan2(ẏb, ẋb). The matrix
M = MT > 0 represents the inertia and mass matrix,
which includes hydrodynamic added mass. The matrix D
accounts for hydrodynamic damping forces and satisfies
zTDz > 0, ∀z ∈ R3\{0}, and C(νr) is the Coriolis and

centripetal matrix. The vector f ≜ [Tu, δr]
T contains the

surge thrust Tu and the rudder angle δr, and B ∈ R3×2 is
the actuator configuration matrix which maps the control
input vector to forces and moments acting on the body.

2.4 Vehicle Equations in Component Form

The equations of motion (4) may be expanded with respect
to η̇b and ν̇r as

ẋb = ur cos(ψb)− vr sin(ψb) + Vx, (5a)

ẏb = ur sin(ψb) + vr cos(ψb) + Vy, (5b)

ψ̇b = rb, (5c)

u̇r = Fu(ur, vr, rb) + τu, (5d)

v̇r = Fv(ur, vr, rb), (5e)

ṙb = Fr(ur, vr, rb) + τr, (5f)

where we have used that M−1Bf = [τu, 0, τr]
T

under
Assumption 4. Moreover, τu and τr are the control forces
in surge and yaw, respectively, and the expressions of
Fu(·), Fv(·), and Fr(·) are given in Appendix A. The sway
dynamics (5e) can be further expanded as

v̇r = X(ur)rb + Y (ur)vr, (6)

where X(ur) and Y (ur) are specified in Appendix A. We
now state some assumptions regarding the dynamics (6).

Assumption 6. The term X(ur) satisfies

X(ur) + ur > 0, ∀ur > 0. (7)

Assumption 7. The term Y (ur) satisfies

Y (ur) < 0, ∀ur > 0. (8)

Remark 4. Assumption 6 implies that a change in the ori-
entation of the vehicle results in a change of its course, in
nominal conditions without ocean currents. This property
has been derived in e.g. Wiig et al. (2020) and is satisfied
for most marine vehicles by design. Assumption 7 can be
justified by contradiction; if Y (ur) > 0 it would imply that
the vehicle is nominally unstable in the sway direction.
That is, a small perturbation would lead to the sway speed
increasing indefinitely, which is clearly not feasible.

3. CONTROL OBJECTIVES

This section formalizes the control problem that is con-
sidered in this paper. The main objective is to make the
marine vehicle avoid a collision with an obstacle of position

po ≜ [xo, yo]
T
. A second objective is proposed to demon-

strate the flexibility of the collision avoidance algorithm.
We call this the nominal objective, which represents the
mission goal the vehicle should achieve. We propose to
let the nominal objective of the vehicle be to follow a
straight-line path P ≜

{
(x, y) ∈ R2 | y = yt

}
, where yt

is the target position along the inertial y-axis, but note
that the algorithm does not impose any restrictions on
the nominal goal. The objectives are formalized as

dbo(t) ≥ dbomin, (9a) lim
t→∞

ye(t) = 0, (9b)

where ye ≜ yb − yt is the cross-track error between the
vehicle and the path, dbo ≜ ∥pb−po∥ is the distance to the
obstacle, and dbomin>0 is a minimum separation distance.

4. OBSTACLE MODEL

In this section, the model of the obstacle is stated, as well
as the measurements that are needed to implement the
algorithm presented in the next section.

The obstacle is modeled as the kinematic unicycle:

ṗo = R(ψo) [uo 0]
T
, uo ∈ [0, uomax] , (10a)

ψ̇o = ro, ro ∈ [−romax, romax] , (10b)

u̇o = ao, ao ∈ [−aomax, aomax] , (10c)

where uo is the forward speed and ψo is the heading angle.
Moreover, ao represents the linear acceleration and ro the
heading rate of the obstacle. Note that these are absolute
values and thus the effect of the ocean current is implicitly
included in the model. The kinematic equations (10) are
a suitable representation that describe both moving and
static objects, as well as a large class of vehicles. We
assume that the minimum separation distance dbomin is
chosen large enough to account for the vehicle and obstacle
areas such that they can be considered as moving points.

4.1 Required Measurements

An overview of the required measurements is shown in
Figure 1, where the marine vehicle is given in blue and
the obstacle in grey. The vehicle must be able to sense
the distance to the obstacle, dbo, which is used to decide
when it must perform an evasive maneuver. To obtain
a safe course direction for the maneuver, the vehicle
must furthermore sense the collision cone of the obstacle,
represented by the dashed lines in Figure 1. In general, a
course direction in the interior of the cone will ultimately
cause the vehicle to collide with the obstacle if it is
static. The concept can be applied in the dynamic case
by computing the course in a reference frame moving with
the obstacle. Measurements of the velocity vo ≜ ṗo must
therefore be readily available in order to take into account
the obstacle movements during the maneuver.

Remark 5. The distance to the obstacle and the collision
cone can be measured using range sensors such as a lidars,
radars, and sonars. Velocity measurements can be obtained
from a Doppler radar or by using a tracking algorithm.

Fig. 1. Illustration of the measurements needed for the
collision avoidance algorithm.

5. GUIDANCE ALGORITHM

In this section, we present the algorithm that computes
the course direction the vehicle should keep in order to
complete the objectives (9). Note that we choose to give
the commanded angles as course references, as opposed to
heading references, since the vehicle is capable of having
a side-ways velocity that causes a deviation between the
orientation of the vehicle and the cardinal direction it is
moving in. This is both due to the ocean current and
the vehicle’s underlying dynamics. The structure of the
algorithm is equal to that of Haraldsen et al. (2021b),
which was inspired by Wiig et al. (2020), as it is not
necessary to consider the ocean current explicitly at this
stage. The ocean current will, however, have a significant
impact on the analysis in Section 7, where conditions for
choosing the design parameters of the algorithm are found.

5.1 Nominal Course Reference

The nominal course reference should make the vehicle
converge to the desired path P by driving the cross-
track error ye to zero. To achieve this, the course angle is
computed by a line-of-sight guidance law (Fossen, 2011):

ψfnom ≜ atan2
(
−ye
∆

)
, (11)

where ∆ > 0 is a look-ahead distance, which was proven
in Fossen and Pettersen (2014) to provide semi-global
exponential convergence of the cross track error to zero
when applied to vehicles such as the one modeled in (4a).

5.2 Safe Course Reference

The collision cone of the obstacle, V ≜ (ψ−
ν , ψ

+
ν ), defines

a set of unsafe vehicle course directions, where

ψ±
ν ≜ α1 ± α2. (12)

The angles α1 and α2 are found geometrically as

α1 ≜ atan2(yo − yb, xo − xb), (13)

α2 ≜ arcsin

(
dbomin

dbo

)
, (14)

as seen in Figure 1. The cone is rotated about the apex to
account for changes in the position of the obstacle po:

ψ±
νo

≜ ψ±
ν + ψ±

vo , (15)

where the angles ψ±
vo are defined as (Haraldsen et al., 2020)

ψ±
vo ≜ arcsin

(
uo

Ub
sin

(
π − ψo + ψ±

ν

))
, (16)
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strate the flexibility of the collision avoidance algorithm.
We call this the nominal objective, which represents the
mission goal the vehicle should achieve. We propose to
let the nominal objective of the vehicle be to follow a
straight-line path P ≜

{
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, where yt

is the target position along the inertial y-axis, but note
that the algorithm does not impose any restrictions on
the nominal goal. The objectives are formalized as
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ye(t) = 0, (9b)

where ye ≜ yb − yt is the cross-track error between the
vehicle and the path, dbo ≜ ∥pb−po∥ is the distance to the
obstacle, and dbomin>0 is a minimum separation distance.

4. OBSTACLE MODEL

In this section, the model of the obstacle is stated, as well
as the measurements that are needed to implement the
algorithm presented in the next section.

The obstacle is modeled as the kinematic unicycle:
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u̇o = ao, ao ∈ [−aomax, aomax] , (10c)

where uo is the forward speed and ψo is the heading angle.
Moreover, ao represents the linear acceleration and ro the
heading rate of the obstacle. Note that these are absolute
values and thus the effect of the ocean current is implicitly
included in the model. The kinematic equations (10) are
a suitable representation that describe both moving and
static objects, as well as a large class of vehicles. We
assume that the minimum separation distance dbomin is
chosen large enough to account for the vehicle and obstacle
areas such that they can be considered as moving points.

4.1 Required Measurements

An overview of the required measurements is shown in
Figure 1, where the marine vehicle is given in blue and
the obstacle in grey. The vehicle must be able to sense
the distance to the obstacle, dbo, which is used to decide
when it must perform an evasive maneuver. To obtain
a safe course direction for the maneuver, the vehicle
must furthermore sense the collision cone of the obstacle,
represented by the dashed lines in Figure 1. In general, a
course direction in the interior of the cone will ultimately
cause the vehicle to collide with the obstacle if it is
static. The concept can be applied in the dynamic case
by computing the course in a reference frame moving with
the obstacle. Measurements of the velocity vo ≜ ṗo must
therefore be readily available in order to take into account
the obstacle movements during the maneuver.

Remark 5. The distance to the obstacle and the collision
cone can be measured using range sensors such as a lidars,
radars, and sonars. Velocity measurements can be obtained
from a Doppler radar or by using a tracking algorithm.

Fig. 1. Illustration of the measurements needed for the
collision avoidance algorithm.

5. GUIDANCE ALGORITHM

In this section, we present the algorithm that computes
the course direction the vehicle should keep in order to
complete the objectives (9). Note that we choose to give
the commanded angles as course references, as opposed to
heading references, since the vehicle is capable of having
a side-ways velocity that causes a deviation between the
orientation of the vehicle and the cardinal direction it is
moving in. This is both due to the ocean current and
the vehicle’s underlying dynamics. The structure of the
algorithm is equal to that of Haraldsen et al. (2021b),
which was inspired by Wiig et al. (2020), as it is not
necessary to consider the ocean current explicitly at this
stage. The ocean current will, however, have a significant
impact on the analysis in Section 7, where conditions for
choosing the design parameters of the algorithm are found.

5.1 Nominal Course Reference

The nominal course reference should make the vehicle
converge to the desired path P by driving the cross-
track error ye to zero. To achieve this, the course angle is
computed by a line-of-sight guidance law (Fossen, 2011):

ψfnom ≜ atan2
(
−ye
∆

)
, (11)

where ∆ > 0 is a look-ahead distance, which was proven
in Fossen and Pettersen (2014) to provide semi-global
exponential convergence of the cross track error to zero
when applied to vehicles such as the one modeled in (4a).

5.2 Safe Course Reference

The collision cone of the obstacle, V ≜ (ψ−
ν , ψ

+
ν ), defines

a set of unsafe vehicle course directions, where

ψ±
ν ≜ α1 ± α2. (12)

The angles α1 and α2 are found geometrically as

α1 ≜ atan2(yo − yb, xo − xb), (13)
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, (14)

as seen in Figure 1. The cone is rotated about the apex to
account for changes in the position of the obstacle po:
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ν + ψ±

vo , (15)

where the angles ψ±
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Fig. 2. Illustration of the collision avoidance scheme.

and we denote Ub ≜ ∥vb∥ the vehicle speed. To circumvent
the obstacle safely, we let the safe course angles be defined
in the exterior of Vo ≜

(
ψ−
νo
, ψ+

νo

)
as

ψ±
fca = ψ±

νo
± γsafe, (17)

where γsafe ∈
[
0, π

2

)
is an additional avoidance angle which

dictates how far the vehicle stays from the collision cone
during the evasive maneuver.

5.3 Algorithm Definition

In order to choose the desired course direction of the
vehicle, ψfd ∈ {ψfnom, ψfca}, we define a safety distance
dsafe > dbomin around the obstacle, as illustrated in
Figure 2. If, inside of this radius, the nominal course
direction will lead to a collision, i.e. if

ψfnom ∈ Vγ

dbo ≤ dsafe
, (18)

then the desired course is chosen as ψfd = ψj
fca to make

the vehicle diverge from the path and safely pass the
obstacle, where Vγ is the set Vo extended by the angle
γsafe as shown in Figure 2. The evasive maneuver will be
performed until it is safe for the vehicle to return to the
path, i.e. until:

ψfnom ̸∈ Vγ , (19)
at which point we let ψfd = ψfnom once again. The param-
eter j ∈ {±} determines the direction of the maneuver and
signifies a clockwise and counter-clockwise turn. We let the
direction be constant until a new maneuver is performed in
accordance with (18) - (19). The parameter may be chosen
to comply with the given sea regulations or possibly some
other agreed upon set of rules. However, since we do not
assume anything about the obstacle decision making, we
here take a more conservative approach that will make the
vehicle avoid a collision regardless of what the obstacle
does, motivated by Wiig et al. (2020). Specifically, if the
vehicle is on the boundary of the circle as the maneuver is
initiated, that is dbo = dsafe, we choose

j = argmax
j∈{±}

∣∣∣ψo − ψj
fca

∣∣∣ . (20)

This will make the vehicle attempt to maneuver behind the
obstacle. If the vehicle is within the safe circle, we instead
make it turn towards the closest safe candidate, i.e. we let

j = argmin
j∈{±}

∣∣∣ψf − ψj
fca

∣∣∣ . (21)

6. CONTROL SYSTEM

This section presents the control system that generates
the control forces applied to the vehicle based on the
course input received from the guidance algorithm. We
here extend the control system of Haraldsen et al. (2021b)
with the necessary modifications to compensate for the
effects of an ocean current acting on the vehicle. This
leads to a requirement on the vehicle relative surge speed,
dependent on the strength of the ocean current, which
enables the vehicle to control its course direction through
the yaw angle and thus its accessible control forces.

6.1 Course Control

To make the vehicle track the commanded course angles,
we define the desired course rate of the vehicle as

rfd = ψ̇fd − kψψ̃f , (22)

where ψ̃f ≜ ψf − ψfd is the course tracking error and
kψ > 0 is the course control gain. It is straight-forward to
verify that the above control law exponentially stabilizes
the course error. However, due to the modular structure
of the guidance algorithm, the assigned direction may be
a discontinuous signal. In such cases, the vehicle will not
be able to keep the required course rate temporarily due
to actuator constraints. To be able to include this in the
algorithm, we require that the following holds:

Assumption 8. The convergence time of the vehicle course
rate, rf ≜ ψ̇f , to the desired rate, rfd (22), when the
guidance algorithm switches from nominal guidance (11)
to collision avoidance (17) is upper bounded by Tswitch > 0.

6.2 Surge and Yaw Control

The achievement of the control objectives considered in
this paper is not directly influenced by the vehicle surge
speed. We therefore choose the desired relative speed as a
constant, denoted by urd(t) = Urd > 0, which provides
some predictability for crossing vehicles and limits the
wear and tear on the actuators. To maintain the maneuver-
ability of the vehicle, the speed should exceed the strength
of the ocean current and moreover meet the requirement:

Assumption 9. The desired relative surge speed satisfies

Urd > max

{
Vmax,

1

2
Vmax −Xd

}
. (23)

We will control the course rate of the vehicle through the
yaw control force. The course rate can be related to the
yaw rate of the vehicle by the relationship

rf =
rb

(
U2
bd +Xdubd − ucubd − vcvb

)
+ vrYdubd

U2
bd

, (24)

which is found by differentiating ψf = ψb +atan2 (vb, ubd)
under the assumption that ur ≡ Urd, and we introduce the
notation Yd ≜ Y (Urd), Xd ≜ X(Urd), ubd ≜ Urd +uc, and

Ubd ≜
√
u2
bd + v2b for conciseness. In accordance with (24),

we choose the desired yaw rate of the vehicle as

rbd ≜
U2
bdrfd − Ydvrubd

U2
bd +Xdubd − ucubd − vcvb

. (25)

To make the vehicle keep the desired speed and yaw rate,
the following feedback linearizing controllers are applied:

τu = −Fu(ur, vr, rb) + u̇rd − kuũr, (26a)

τr = −Fr(ur, vr, rb) + ṙbd − kr r̃b, (26b)

where ũr ≜ ur −urd is the surge speed error, r̃b ≜ rb− rbd
is the yaw rate error, and ku, kr > 0 are the surge and yaw
control gains. From (5) it is seen that the controllers (26)
ensure global exponential tracking of the desired relative
speed and yaw rate.

Assumption 10. At the time t = t0, the vehicle has
operated long enough for the yaw rate and surge speed
to converge, that is ũr(t0) = r̃b(t0) = 0.

Remark 6. The relation (24) is valid for all time t ≥ t0
under Assumption 10. Furthermore, to have a well-defined
control input (26b), the denominator of (25) needs to be
nonzero. We will show in Lemma 1 that this is implied
under Assumptions 6 and 9.

7. CLOSED-LOOP ANALYSIS

We will in this section analyze the marine vehicle with
the presented control system and guidance algorithm and
arrive at a set of conditions ensuring vehicle safety and
achievement of the nominal goal.

7.1 Lateral Speed Bound

During turning maneuvers, the vehicle will glide side-ways
through the water by inducing a sway velocity relative
to the ocean current. The overall speed of the vehicle is
thus not only influenced by the ocean current but also the
lateral vehicle motion through the relative sway speed vr.
In order to know how large the safety distance dsafe around
the obstacle should be, it is necessary to have an upper
bound of the vehicle speed. For this reason, we establish
in the following lemma the conditions under which the
lateral motion of the vehicle is bounded.

Lemma 1. Consider an underactuated marine vehicle mod-
eled by (5). Let all stated assumptions hold, and suppose
that the vehicle maintains a course rate, rf , satisfying

|rf (t)| ≤ κUrd

|Yd|
|Xd|

vrmax, ∀t ≥ t0, (27)

where κUrd
≜ Urd

Urd+Vmax
. Then, if |vr(t0)| ≤ vrmax, the

solutions of (5e) are bounded by

|vr(t)| ≤ vrmax, ∀t ≥ t0. (28)

Proof. Consider the Lyapunov function candidate V =
1
2v

2
r . The time-derivative of V along the system (5e) is

V̇ =
U2
bd

U2
bd +Xdubd − ucubd − vcvb(

Xdrfvr + Yd

(
1− ucubd + vcvb

U2
bd

)
v2r

)
,

(29)

where we have used the relations (6) and (24). To ensure
that the quadratic term is negative definite, we require

U2
bd − ucubd − vcvb =

U2
rd + Urd∥Vc∥ cos(χc) + v2r + vr∥Vc∥ sin(χc) > 0.

(30)

In the last line, uc and vc are given in amplitude-phase
form, where χc ≜ atan2 (vc, uc). Using that

min
vr

{
v2r + vr∥Vc∥ sin(χc)

}
= −∥Vc∥2 sin2(χc)

4
, (31)

minimizing (30) with respect to χc gives

U2
bd − ucubd − vcvb ≥ Urd(Urd − Vmax) > 0, (32)

where we have used Assumptions 5, 6, and 9. It follows

1− ucubd + vcvb
U2
bd

≥ κUrd
. (33)

Similar arguments can be used to show that

U2
bd +Xdubd − ucubd − vcvb ≥ κXd

> 0, (34)

where κXd
≜ (Urd − Vmax)(Urd + Xd), which verifies

that (25) is well-defined. It follows from Assumption 7 that

V̇ ≤ U2
bd

κXd

(
|Xd| |rf ||vr| − κUrd

|Yd| v2r
)
. (35)

The rest of the proof follows the reasoning presented
in Wiig et al. (2017, Lemma 1). Define the level set

Ωvr ≜ {vr ∈ R | V ≤ 1
2v

2
rmax}. Condition (27) with (35)

ensures that V̇ ≤ 0 on the boundary of this set. Thus,
Ωvr

is a positively invariant set, and any trajectory vr(t)
starting inside of it cannot leave it.

7.2 Guaranteed Collision Avoidance

To ensure that the condition (27) is fulfilled and hence
that the speed of vehicle is bounded, we require that

Assumption 11. The desired course rate (22) is saturated
such that rfd ∈ [−rf max, rf max], where

rf max ≜ κUrd

|Yd|
|Xd|

vrmax. (36)

Since the course reference ψfd can be discontinuous, As-
sumption 11 also prevents the desired course rate from be-
coming overly large during steps. The next lemma derives
the conditions that enable us to choose the parameter (36)
to guarantee collision avoidance under the proposed con-
trol scheme.

Lemma 2. Consider an underactuated marine vehicle mod-
eled by (5) and an obstacle modeled by (10). Let all stated
assumptions hold. Suppose the vehicle maintains a relative
surge speed ur(t) = Urd, ∀t ≥ t0, satisfying

b−
√
4ac > 0, (37)

where the constants a, b, and c will be defined in the
proof of this lemma, and a course rate satisfying rf (t) =
rfd(t), ∀t ≥ t1, where t1 ≥ t0. Furthermore, let ψfd(t) =

ψj
fca(t), ∀t ≥ t1, and suppose that there exists a time

t2 ≥ t1 at which the parameter j satisfies (21) and

ψf (t2) ̸∈ Vo(t2). (38)

Then, if |vr(t0)| ≤ vrmax, where the maximum sway speed
is chosen in the interval vrmax ∈ [v−rmax, v

+
rmax], with

v±rmax ≜
−b±

√
b2 − 4ac

2a
, (39)

a collision will not occur for the remaining time, that is

dbo(t) ≥ dbomin, ∀t ≥ t2. (40)

Proof. We will first prove that by staying on a course in
the exterior of the collision cone, the vehicle will avoid a
collision with the obstacle. Let ψfo ≜ atan2(ẏb−ẏo, ẋb−ẋo)
denote the relative course direction of the vehicle with
respect to the obstacle. We consider relative terms as this
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τr = −Fr(ur, vr, rb) + ṙbd − kr r̃b, (26b)

where ũr ≜ ur −urd is the surge speed error, r̃b ≜ rb− rbd
is the yaw rate error, and ku, kr > 0 are the surge and yaw
control gains. From (5) it is seen that the controllers (26)
ensure global exponential tracking of the desired relative
speed and yaw rate.

Assumption 10. At the time t = t0, the vehicle has
operated long enough for the yaw rate and surge speed
to converge, that is ũr(t0) = r̃b(t0) = 0.

Remark 6. The relation (24) is valid for all time t ≥ t0
under Assumption 10. Furthermore, to have a well-defined
control input (26b), the denominator of (25) needs to be
nonzero. We will show in Lemma 1 that this is implied
under Assumptions 6 and 9.

7. CLOSED-LOOP ANALYSIS

We will in this section analyze the marine vehicle with
the presented control system and guidance algorithm and
arrive at a set of conditions ensuring vehicle safety and
achievement of the nominal goal.

7.1 Lateral Speed Bound

During turning maneuvers, the vehicle will glide side-ways
through the water by inducing a sway velocity relative
to the ocean current. The overall speed of the vehicle is
thus not only influenced by the ocean current but also the
lateral vehicle motion through the relative sway speed vr.
In order to know how large the safety distance dsafe around
the obstacle should be, it is necessary to have an upper
bound of the vehicle speed. For this reason, we establish
in the following lemma the conditions under which the
lateral motion of the vehicle is bounded.

Lemma 1. Consider an underactuated marine vehicle mod-
eled by (5). Let all stated assumptions hold, and suppose
that the vehicle maintains a course rate, rf , satisfying

|rf (t)| ≤ κUrd

|Yd|
|Xd|

vrmax, ∀t ≥ t0, (27)

where κUrd
≜ Urd

Urd+Vmax
. Then, if |vr(t0)| ≤ vrmax, the

solutions of (5e) are bounded by

|vr(t)| ≤ vrmax, ∀t ≥ t0. (28)

Proof. Consider the Lyapunov function candidate V =
1
2v

2
r . The time-derivative of V along the system (5e) is

V̇ =
U2
bd

U2
bd +Xdubd − ucubd − vcvb(

Xdrfvr + Yd

(
1− ucubd + vcvb
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bd

)
v2r

)
,

(29)

where we have used the relations (6) and (24). To ensure
that the quadratic term is negative definite, we require

U2
bd − ucubd − vcvb =

U2
rd + Urd∥Vc∥ cos(χc) + v2r + vr∥Vc∥ sin(χc) > 0.

(30)

In the last line, uc and vc are given in amplitude-phase
form, where χc ≜ atan2 (vc, uc). Using that

min
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}
= −∥Vc∥2 sin2(χc)

4
, (31)

minimizing (30) with respect to χc gives

U2
bd − ucubd − vcvb ≥ Urd(Urd − Vmax) > 0, (32)

where we have used Assumptions 5, 6, and 9. It follows

1− ucubd + vcvb
U2
bd

≥ κUrd
. (33)

Similar arguments can be used to show that

U2
bd +Xdubd − ucubd − vcvb ≥ κXd

> 0, (34)

where κXd
≜ (Urd − Vmax)(Urd + Xd), which verifies

that (25) is well-defined. It follows from Assumption 7 that

V̇ ≤ U2
bd

κXd

(
|Xd| |rf ||vr| − κUrd
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)
. (35)

The rest of the proof follows the reasoning presented
in Wiig et al. (2017, Lemma 1). Define the level set

Ωvr ≜ {vr ∈ R | V ≤ 1
2v

2
rmax}. Condition (27) with (35)

ensures that V̇ ≤ 0 on the boundary of this set. Thus,
Ωvr is a positively invariant set, and any trajectory vr(t)
starting inside of it cannot leave it.

7.2 Guaranteed Collision Avoidance

To ensure that the condition (27) is fulfilled and hence
that the speed of vehicle is bounded, we require that

Assumption 11. The desired course rate (22) is saturated
such that rfd ∈ [−rf max, rf max], where

rf max ≜ κUrd

|Yd|
|Xd|

vrmax. (36)

Since the course reference ψfd can be discontinuous, As-
sumption 11 also prevents the desired course rate from be-
coming overly large during steps. The next lemma derives
the conditions that enable us to choose the parameter (36)
to guarantee collision avoidance under the proposed con-
trol scheme.

Lemma 2. Consider an underactuated marine vehicle mod-
eled by (5) and an obstacle modeled by (10). Let all stated
assumptions hold. Suppose the vehicle maintains a relative
surge speed ur(t) = Urd, ∀t ≥ t0, satisfying

b−
√
4ac > 0, (37)

where the constants a, b, and c will be defined in the
proof of this lemma, and a course rate satisfying rf (t) =
rfd(t), ∀t ≥ t1, where t1 ≥ t0. Furthermore, let ψfd(t) =

ψj
fca(t), ∀t ≥ t1, and suppose that there exists a time

t2 ≥ t1 at which the parameter j satisfies (21) and

ψf (t2) ̸∈ Vo(t2). (38)

Then, if |vr(t0)| ≤ vrmax, where the maximum sway speed
is chosen in the interval vrmax ∈ [v−rmax, v

+
rmax], with

v±rmax ≜
−b±

√
b2 − 4ac

2a
, (39)

a collision will not occur for the remaining time, that is

dbo(t) ≥ dbomin, ∀t ≥ t2. (40)

Proof. We will first prove that by staying on a course in
the exterior of the collision cone, the vehicle will avoid a
collision with the obstacle. Let ψfo ≜ atan2(ẏb−ẏo, ẋb−ẋo)
denote the relative course direction of the vehicle with
respect to the obstacle. We consider relative terms as this
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simplifies the analysis. It is seen geometrically that the
condition (38) is equivalent to

|ψfo(t2)− α1(t2)| ≥ α2(t2), (41)

which can be verified trivially. The rest follows the similar
arguments as in (Haraldsen et al., 2021a, Lemma 1). The
time-derivative of the distance, dbo, is found geometrically:

ḋbo = −Ubo cos(ψfo − α1), (42)

where Ubo ≜ ∥vb − vo∥. Assuming the inequality (41)
holds for all t ≥ t2 and substituting the expression for
α2 (14), the solutions of (42) satisfy

dbo(t) ≥ dbomin, ∀t ≥ t2, (43)

which concludes this part of the proof.

To stay on a safe course, the course rate of the vehicle must
exceed the rate of change of obstacle collision cone. As a
minimum, this must hold for the case ψf = ψj

νo
, which

implies that the course of the vehicle is on the boundary
of the collision cone set. The time-derivative of ψj

νo
(15) is

ψ̇±
νo

= ψ̇±
ν + ψ̇±

vo . (44)

where

ψ̇±
vo =

(
ro − ψ̇±

ν

)
P
(
ϑ±)+ aoQ

(
ϑ±)

− (vbv̇b + ubu̇b)R
(
ϑ±) ,

(45)

by (16), with ϑ± ≜ π − ψo + ψ±
ν and

P
(
ϑ±) ≜ uo cos (ϑ

±)√
U2
bd − u2

o sin
2 (ϑ±)

, (46a)

Q
(
ϑ±) ≜ sin (ϑ±)√

U2
bd − u2

o sin
2 (ϑ±)

, (46b)

R
(
ϑ±) ≜ uo sin (ϑ

±)

U2
bd

√
U2
bd − u2

o sin
2 (ϑ±)

. (46c)

The time-derivative of ψj
ν (12) is

ψ̇±
ν = −Ubo

dbo
(sin(ψfo − α1)∓ cos(ψfo − α1) tan(α2)) .

(47)
Since ψf = ψ±

νo
=⇒ ψfo − α1 = ±α2, we have

ψ̇±
ν =

Ubo

dbo

(
∓ sin(α2)± cos(α2) tan(α2)

)
= 0. (48)

Inserting u̇c = rbvc and v̇c = −rbuc gives

ψ̇±
νo

= roP
(
ϑ±)+ aoQ

(
ϑ±)

− (rb (Xdvb − vbuc + ubdvc) + Ydvbvr)R
(
ϑ±) . (49)

Then, substituting rf = ±ψ̇±
νo

and the relation (24) for rb,

we obtain a closed expression for ψ̇±
νo

as

ψ̇±
νo

=
Gn

Gd
, (50)

where

Gn ≜ roP
(
ϑ±)+ aoQ

(
ϑ±)

+
U2
bdYdv

2
rR (ϑ±)

U2
bd +Xdubd − ucubd − vcvb

,
(51)

Gd ≜ 1±R
(
ϑ±) U2

bd (Xdvb − vruc + Urdvc)

U2
bd +Xdubd − ucubd − vcvb

. (52)

Using Assumptions 5, 6, and 9, an upper bound
∣∣∣ψ̇±

νo

∣∣∣ ≤
Gnmax

Gdmin
:= Fνo

can be found, where

Gnmax ≜
v2r |Yd|uomax

κXd

√
(Urd − Vmax)2 − u2

omax

+
ao,max√

(Urd − Vmax)2 − u2
omax

+ romax
uomax

Urd − Vmax
,

(53)

Gdmin ≜1− uomax
|Xd||vr|+ Vmax

κXd

√
(Urd − Vmax)2 − u2

omax

. (54)

Hence, in the worst case scenario, we must have

κUrd

|Yd|
|Xd|

vrmax ≥ Fνo(vrmax). (55)

in order to comply with Assumption 11. The inequal-
ity (55) has the solution vrmax ∈ [v−rmax, v

+
rmax] if and

only if b > 0 and b ≥
√
4ac, where

a ≜ −|Yd|uomax
κUrd

+ 1

κXd

√
(Urd − Vmax)2 − u2

omax

, (56)

b ≜
|Yd|
|Xd|

(
κUrd

− κUrd
uomaxVmax

κXd

√
(Urd − Vmax)2 − u2

omax

)
, (57)

c ≜ −romaxuomax

Urd − Vmax
− ao,max√

(Urd − Vmax)2 − u2
omax

. (58)

Hence, it follows from (37) that the vehicle will maintain
a safe course and avoid a collision for all time t ≥ t2.

Remark 7. Similar to the proof of Haraldsen et al. (2021b,
Lemma 3), we show in Lemma 2 that the vehicle will
avoid a collision with the obstacle as long as it is able
to remain on a safe course direction. For vehicles with
underactuated sway dynamics, this is not trivially achieved
due to the coupling between the course rate of the vehicle
and its swaying motion. Notice also that in the case of
a weak or insignificant ocean current Vmax ≈ 0, the
avoidance requirement (55) reduces exactly to the one
found in Haraldsen et al. (2021b), where ocean currents
were not considered. It is shown here that the effect of an
ocean current places higher requirements on the vehicle
course rate and relative surge speed in order to guarantee
avoidance.

7.3 Safe Path Following in the Presence of Ocean Currents

We will combine the previous results to derive the main
theorem, which states the complete set of conditions under
which the proposed algorithm enables the underactuated
vehicle to converge to the desired path without a col-
lision, while moving under the influence of ocean cur-
rents. For brevity, we introduce the parameters Urmax ≜√

U2
rd+ v2rmax and Ubmax≜

√
U2
rmax+V 2

max+2VmaxUrmax.

Theorem 1. Consider an obstacle modeled as (10). Let
all stated assumptions hold, conditions (37) and (39) of
Lemma 2 hold, and, for some ϵ ∈ (0, π], the look-ahead
distance satisfy

∆ ≥ |Xd|Ubmax

κUrd
|Yd| vrmax − ϵ |Xd| kψ

. (59)

Furthermore, let the additional avoidance angle satisfy

γsafe ≥ arccos

(
dbomin

dbomin + Tswitch(Ubmax + uomax)

)
, (60)

and the safety distance satisfy

dsafe ≥ do + dturn + UbmaxTswitch + dbomin, (61)

where

dturn ≜
Ubmax

min


rf max,

kψ

Si(π
2 )

 , (62)

tturn ≜ max





π

rf max
,
ln


π
γsafe



kψ



 , (63)

and do ≜ uomax(tturn + Tswitch). Then, if |vr(t0)| ≤ vrmax

and dbo(t0) ≥ dsafe, the underactuated marine vehicle
modeled by (5) and controlled by the surge and yaw con-
trollers (26a)-(26b), the course controller (22), the guid-
ance law (11), and the collision avoidance algorithm (17)-
(21), will achieve the control objectives (9) and maintain
a bounded sway speed |vr(t)| ≤ vrmax for all t ≥ t0.

Proof. It follows from Assumption 11 and Lemma 1 that
the relative sway speed is bounded by |vr| ≤ vrmax. Hence,
by Assumption 5, Ub ≤ Ubmax.

Suppose the vehicle must avoid a collision by (18) as the
distance dbo equals dsafe. Over the time Tswitch, the vehicle
will reach the required rate rfd. In the worst case scenario,
the vehicle travels directly towards the obstacle at a speed
of Ubmax. Then, the vehicle will proceed to turn towards
the angle ψj

fca. The turn cannot be larger than π rad

by definition. It follows from (22) that the convergence

time from |ψ̃f | = π to |ψ̃f | ≤ γsafe is tturn =
ln
�

π
γsafe


kψ

.

The vehicle will then have reached the exterior of the
collision cone. The distance traveled by the vehicle towards
the obstacle over this turn is dturn = Ubmax

kψ
Si(π2 ) (Wiig

et al., 2017, Lemma 3). However, if |rfd| ≥ rf max, we

alternatively have tturn = π
rf max

and dturn = Ubmax

rf max
. The

distance traveled by the obstacle towards the vehicle can at
most be do over this maneuver. Hence, there exists a time
at which all conditions of Lemma 2 are satisfied before the
distance dbo is reduced to less than dbomin. Similarly, if
a maneuver is initiated while dbo < dsafe, it follows from
the avoidance angle γsafe (60) that the vehicle maintains a
course in the exterior of the collision cone until rf = rfd
and Lemma 2 can be applied (Haraldsen et al., 2021b,
Theorem 1). Since the vehicle maintains a relative surge
speed satisfying (37), which implies that Urd − Vmax >
uomax, there exists a time at which the vehicle has fully
escaped the obstacle and satisfies ψfd = ψfnom for all

future time. An upper bound |ψ̇fnom| ≤ Ubdmax

∆ is found
from (11), which combined with (36) and (59) shows that

rf max > |ψ̇fnom|. Hence, the vehicle will eventually reach

|ψ̃f | ≤ ϵ, from which it satisfies the control law (22) by
the choice of ∆ (59). It follows that the vehicle reaches the
desired path P and stays on it thereafter.

8. SIMULATION RESULTS

This section presents a simulation of the proposed control
algorithm applied to a light AUV (LAUV). In the sim-
ulation, the LAUV moves in the horizontal plane, thus
satisfying the model (4). The numerical parameters of the
vehicle are found in Estrela da Silva et al. (2007). The
remaining parameters used in the simulation are as follows:
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Fig. 3. North-East (NE) plots of the simulation results,
and the relative vehicle sway speed vr and distance
dbo plotted with respect to time. The NE plots shows
the vehicle in yellow and the obstacle in grey. The
distances dbomin and dsafe are demonstrated by the red
and green circles, respectively. The cone Vγ is shown
as the red, transparent sector and the path P as the
blue line. The vehicle and obstacle trajectories are
represented by the yellow and red dashed lines.

romax = 0.2 rad/s Vx = −0.6 m/s Vy = 0.6 m/s
aomax = 0.05 m/s2 Urd = 3 m/s kψ = 0.5 s−2

uomax = 1.6 m/s ϵ = π
6 rad kr = 1 s−1

vrmax = 0.48 m/s ∆ = 6 m ku = 1 s−1

rf max = 0.96 rad/s dbomin = 20 m dsafe = 47 m
Tswitch = 1.92 s yt = 0 m γsafe = 0.86 rad

All design parameters were chosen to satisfy the assump-
tions of Theorem 1, which can be verified trivially. More-
over, Yd = −3.7857 and Xd = −1.4514, which fulfills
Assumptions 6 and 7. The results of the simulation can
be seen in Figure 3. The obstacle moves with increasing
speed along the vehicle path, which requires the vehicle to
diverge from the path in accordance with condition (18).
The obstacle proceeds to take a right turn simultaneously
as the vehicle passes on the right side. The vehicle is then
required to move further aside to avoid a collision. From
Figure 3 it is seen that the algorithm takes the vehicle
safely past the obstacle despite a significant ocean current
acting on it, and the vehicle converges to the path once
it has evaded the obstacle. Moreover, the relative sway
speed remains within the defined bounds, which supports
the result of Theorem 1.
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where

dturn ≜
Ubmax

min


rf max,

kψ

Si(π
2 )

 , (62)

tturn ≜ max





π

rf max
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π
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
 , (63)

and do ≜ uomax(tturn + Tswitch). Then, if |vr(t0)| ≤ vrmax

and dbo(t0) ≥ dsafe, the underactuated marine vehicle
modeled by (5) and controlled by the surge and yaw con-
trollers (26a)-(26b), the course controller (22), the guid-
ance law (11), and the collision avoidance algorithm (17)-
(21), will achieve the control objectives (9) and maintain
a bounded sway speed |vr(t)| ≤ vrmax for all t ≥ t0.

Proof. It follows from Assumption 11 and Lemma 1 that
the relative sway speed is bounded by |vr| ≤ vrmax. Hence,
by Assumption 5, Ub ≤ Ubmax.

Suppose the vehicle must avoid a collision by (18) as the
distance dbo equals dsafe. Over the time Tswitch, the vehicle
will reach the required rate rfd. In the worst case scenario,
the vehicle travels directly towards the obstacle at a speed
of Ubmax. Then, the vehicle will proceed to turn towards
the angle ψj

fca. The turn cannot be larger than π rad

by definition. It follows from (22) that the convergence
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.

The vehicle will then have reached the exterior of the
collision cone. The distance traveled by the vehicle towards
the obstacle over this turn is dturn = Ubmax

kψ
Si(π2 ) (Wiig

et al., 2017, Lemma 3). However, if |rfd| ≥ rf max, we

alternatively have tturn = π
rf max

and dturn = Ubmax

rf max
. The

distance traveled by the obstacle towards the vehicle can at
most be do over this maneuver. Hence, there exists a time
at which all conditions of Lemma 2 are satisfied before the
distance dbo is reduced to less than dbomin. Similarly, if
a maneuver is initiated while dbo < dsafe, it follows from
the avoidance angle γsafe (60) that the vehicle maintains a
course in the exterior of the collision cone until rf = rfd
and Lemma 2 can be applied (Haraldsen et al., 2021b,
Theorem 1). Since the vehicle maintains a relative surge
speed satisfying (37), which implies that Urd − Vmax >
uomax, there exists a time at which the vehicle has fully
escaped the obstacle and satisfies ψfd = ψfnom for all

future time. An upper bound |ψ̇fnom| ≤ Ubdmax

∆ is found
from (11), which combined with (36) and (59) shows that

rf max > |ψ̇fnom|. Hence, the vehicle will eventually reach

|ψ̃f | ≤ ϵ, from which it satisfies the control law (22) by
the choice of ∆ (59). It follows that the vehicle reaches the
desired path P and stays on it thereafter.

8. SIMULATION RESULTS

This section presents a simulation of the proposed control
algorithm applied to a light AUV (LAUV). In the sim-
ulation, the LAUV moves in the horizontal plane, thus
satisfying the model (4). The numerical parameters of the
vehicle are found in Estrela da Silva et al. (2007). The
remaining parameters used in the simulation are as follows:
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aomax = 0.05 m/s2 Urd = 3 m/s kψ = 0.5 s−2

uomax = 1.6 m/s ϵ = π
6 rad kr = 1 s−1

vrmax = 0.48 m/s ∆ = 6 m ku = 1 s−1

rf max = 0.96 rad/s dbomin = 20 m dsafe = 47 m
Tswitch = 1.92 s yt = 0 m γsafe = 0.86 rad

All design parameters were chosen to satisfy the assump-
tions of Theorem 1, which can be verified trivially. More-
over, Yd = −3.7857 and Xd = −1.4514, which fulfills
Assumptions 6 and 7. The results of the simulation can
be seen in Figure 3. The obstacle moves with increasing
speed along the vehicle path, which requires the vehicle to
diverge from the path in accordance with condition (18).
The obstacle proceeds to take a right turn simultaneously
as the vehicle passes on the right side. The vehicle is then
required to move further aside to avoid a collision. From
Figure 3 it is seen that the algorithm takes the vehicle
safely past the obstacle despite a significant ocean current
acting on it, and the vehicle converges to the path once
it has evaded the obstacle. Moreover, the relative sway
speed remains within the defined bounds, which supports
the result of Theorem 1.
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9. CONCLUSIONS

In this paper, we have presented the development and
analysis of a reactive collision avoidance algorithm that
will enable an underactuated surface vehicle moving under
the influence of ocean currents to avoid a collision with
an obstacle and moreover achieve its overall goal. The
algorithm is based on defining a safe circle around the
obstacle, in which the vehicle must maintain safe course
directions and thus temporarily diverge from its nominal
behaviour if necessary. Safe directions are defined using
the collision cone of the obstacle, and we make the vehicle
keep an additional avoidance angle to the collision cone
to take into account discontinuities in the assigned course
directions caused by the modular nature of the algorithm.
The proposed method guarantees that the vehicle avoids a
collision with the obstacle if the derived avoidance criteria
are fulfilled, shown by a rigorous analysis of the closed-
loop system. The analysis generalizes previous results on
the similar concept with the additional complexity of
having an constant and irrotational ocean current acting
on the vehicle. This leads to stricter requirements on the
vehicle relative surge speed and course rate in order to
guarantee collision avoidance, dependent on the strength
of the ocean current. The safety distance and avoidance
angle are similarly enhanced to account for a potentially
higher absolute speed of the vehicle when moving in ocean
currents. Simulations are provided to demonstrate the
algorithm and validate the analysis.
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Appendix A. FUNCTIONAL EXPRESSIONS

The functional expressions of the model (5) are

Fu(ur, vr, rb) ≜ rb
rbm23 + vrm22

m11
− ur

d11
m11

, (A.1)

Fr(ur, vr, rb) ≜

rb
m23 (d23 −m11ur)−m22 (d33 +m23ur)

m22m33 −m2
23

+

vr
m23d22 +m22 (d32 + ur (m22 −m11))

m22m33 −m2
23

,

(A.2)

Fv(ur, vr, rb) ≜

rb
d33m23 − d23m33 + ur

(
m2

23 −m11m33

)
m22m33 −m2

23︸ ︷︷ ︸
X(ur)

+

vr
d32m23 − d22m33 + urm23 (m22 −m11)

m22m33 −m2
23︸ ︷︷ ︸

Y (ur)

,

(A.3)

wheremij and dij are the elements of the inertia matrixM
and damping matrix D, respectively.


