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We consider the inverse scattering problem of retrieving the structural

parameters of a stratified medium consisting of dispersive materials, given

knowledge of the complex reflection coefficient in a finite frequency range. It is

shown that the inverse scattering problem does not have a unique solution in

general. When the dispersion is sufficiently small, such that the time-domain

Fresnel reflections have durations less than the round-trip time in the layers,

the solution is unique and can be found by layer peeling. Numerical examples

with dispersive and lossy media are given, demonstrating the usefulness of

the method for e.g. THz technology. c© 2013 Optical Society of America

OCIS codes: 100.3200, 120.5700, 280.0280, 300.6495, 310.0310.

1. Introduction

The ability to detect and identify materials, hidden behind barriers, has potential applica-

tions within security and non-destructive testing [1,2]. The THz range of the electromagnetic

spectrum is particularly attractive for these applications, because many barrier materials,

such as clothing, plastic, and paper only attenuate THz waves moderately, while other mate-

rials, such as explosives and related compounds have characteristic spectroscopic fingerprints

in the THz region [1,3]. A relevant geometry for these applications is the reflection geometry

in which a pulsed or CW signal is sent towards an unknown structure and the amplitude

and phase of the reflected signal is detected [4]. The task is then to deduce the structure

from the measured reflection coefficient. The situation is simplified in the effectively one-

dimensional case, where the electromagnetic properties of the structure only vary in one

direction. Retrieval of the structure parameters then becomes a one-dimensional inverse-

scattering problem. However, because the relevant materials are lossy in the THz range,
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they are also dispersive, according to the Kramers–Kronig relations. Thus when applying

inverse-scattering algorithms to the THz range one must take into account absorption and

material dispersion.

There are several formulations and algorithms for the one-dimensional inverse scattering

problem [5–15]. In particular, the layer peeling algorithms have turned out to be very efficient,

and used in a wide range of applications [7, 8, 11–16]. These algorithms are based on the

following, simple fact: Consider the time-domain reflection impulse response of a layered

structure. By causality, the leading edge is only dependent on the first layer, since the wave

has not had time to feel the presence of the other layers. Thus one can identify the first layer

of the structure from the impulse response. This information can be used to remove the

influence from the layer, which leads to synthetic reflection data with the first layer peeled

off. This procedure can be continued until the complete structure has been identified.

In this work we generalize the layer-peeling algorithm to dispersive stratified structures.

Provided the material dispersion is sufficiently small, such that the time-domain Fresnel

reflections have durations less than the round-trip time in each layer, we can uniquely re-

construct the refractive indices of the structure (Section II). The method is illustrated by

numerical examples in Section III. Finally, in Section IV we prove that for larger dispersion,

the inverse scattering problem does not have a unique solution in general. This is because one

cannot distinguish between the non-instantaneous temporal response of the medium itself

(due to dispersion), and the temporal response due to the stratification (caused by reflections

at the layer boundaries). Thus, extra information is needed, such as an upper bound for the

dispersion combined with a lower bound for the layer thicknesses.

2. Transfer matrix model and layer peeling

We first describe the model of the stratified medium. Consider a layered, planar structure,

consisting of N+1 layers with refractive indices nj(ω) and thicknesses dj , see Fig. 1. Here the

index j = 0, 1, . . . , N labels the layer. The light propagation in this structure is conveniently

modeled using transfer matrices. For simplicity we limit the analysis to normal incidence.

The transfer matrix of the transition from refractive index nj−1 to nj is

T ρ
j =

1

1− ρj

[

1 −ρj

−ρj 1

]

, (1)

where

ρj(ω) =
nj−1(ω)− nj(ω)

nj−1(ω) + nj(ω)
(2)
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Fig. 1. A planar structure consisting of N + 1 layers. The thicknesses and

refractive indices of the layers are dj and nj(ω), respectively.

is the Fresnel reflection coefficient, associated with the index step between nj−1(ω) and nj(ω).

The transfer matrix of the pure propagation in layer j is

T d
j =

[

exp[iωnj(ω)dj/c] 0

0 exp[−iωnj(ω)dj/c]

]

, (3)

where c is the vacuum light velocity. Note that Eqs. (1)-(3) are also valid when the refractive

index is complex. The refractive index is necessarily complex for dispersive materials, because

dispersion is accompanied by loss according to the Kramers–Kronig relations. The transfer

matrix of the total structure is given by

M = T d
NT

ρ
NT

d
N−1 · · ·T

ρ
2 T

d
1 T

ρ
1 T

d
0 . (4)

The reflection coefficient r(ω) from the left, and the transmission coefficient t(ω) for the

electric field from left to right, are given by the (2,1)- and (2,2)-elements of M :

r(ω) = −
M21

M22

, (5a)

t(ω) =
detM

M22

. (5b)

We will now describe a layer-peeling method that can be used in the presence of weak

dispersion. The precise condition for the dispersion will become clear below. To be able to

reconstruct the structure, we assume that the refractive index n0(ω) of the zeroth layer and

the reflection spectrum of the entire structure (as seen from z = 0), are known. The goal is

to calculate nj(ω) for all j ≥ 1 and dj for j ≥ 0.
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The reflection spectrum of the layered structure can be expressed as follows:

r(ω) =

∫

∞

2d0/c

h(t) exp(iωt)dt, (6)

where h(t) is the impulse response, i.e., the time-domain reflected field when a Dirac delta

pulse is incident to the structure. Note the lower limit 2d0/c in the integral: For a non-

dispersive layer 0, the round-trip time to the first index step would be 2n0d0/c; however, due

to dispersion we can only be sure that the round-trip time is no less than 2d0/c.

We take the forward and backward propagating frequency-domain fields at z = 0 to be 1

and r(ω), respectively, defining the field vector

[

u0(ω)

v0(ω)

]

=

[

1

r(ω)

]

. (7)

For now we assume that the layer thicknesses dj are known a priori; the case with unknown

layer thicknesses is treated below. The field vector before the beginning of the first layer

(z = d−0 ) is given by
[

u1(ω)

v1(ω)

]

= T d
0

[

u0(ω)

v0(ω)

]

. (8)

We now define the reflection spectrum after the zeroth layer has been “peeled off”:

r1(ω) =
v1(ω)

u1(ω)
. (9)

The index step at z = d0 can be regarded as a frequency-dependent reflector with (un-

known) reflectivity ρ1(ω), in accordance with Eq. (2). We assume that the dispersions of

layers 0 and 1 are sufficiently small, such that the time-domain response associated with

ρ1(ω) has duration less than 2d1/c. Then we can write

r1(ω) = ρ1(ω) +

∫

∞

2d1/c

h1(t) exp(iωt)dt, (10)

where

h1(t) =
1

2π

∫

∞

−∞

r1(ω) exp(−iωt)dω. (11)

In Eq. (10) the lower limit in the integral reflects the fact that any reflections from the later

index steps are delayed by (at least) the round-trip time 2d1/c.

Having established Eq. (10), we can now identify ρ1(ω):

ρ1(ω) =

∫

2d1/c

0

h1(t) exp(iωt)dt. (12)
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With the local reflection coefficient ρ1(ω) in hand, we can calculate the refractive index of

layer 1 using Eq. (2). Once n1(ω) has been found, we can calculate the reflection spectrum

with the first layer removed:

r2(ω) =
v2(ω)

u2(ω)
,

[

u2(ω)

v2(ω)

]

= T d
1 T

ρ
1

[

u1(ω)

v1(ω)

]

. (13)

Now we find ourselves in the same situation as before, so we can continue the process until

all layers have been found.

From Eq. (12) one obtains the complex reflection coefficient of each layer, and therefore,

by Eq. (2), both the real and imaginary parts of the refractive index. One may ask if the

reconstructed refractive index automatically is causal, or whether the Kramers–Kronig rela-

tions could be used in addition to ensure causality. The answer is that the lower limit in the

integral (12) ensures that ρ1(ω) is causal, and therefore by Eq. (2) that n1(ω) is analytic in

the upper half-plane of complex frequency. Provided n1(ω) → 1 as ω → ∞, n1(ω) is therefore

guaranteed to be causal [17].

In practical situations the available bandwidth is finite, the layer thicknesses may not be

known a priori, and the reflection data contains noise. We will now consider these aspects.

2.A. Effect of finite bandwidth

In practice, we only have reflection data in a limited bandwidth ω1 ≤ ω ≤ ω2. In other

words, the reflection data r1(ω) in Eq. (11) is necessarily multiplied by a window function

W (ω), which is nonzero only in the interval ω1 ≤ ω ≤ ω2. Physically, this means that instead

of probing the structure with a Dirac delta pulse, we use an input pulse w(t) of duration

τ ∼ 2π/(ω2 − ω1):

w(t) =
1

2π

∫ ω2

ω1

W (ω) exp(−iωt)dω. (14)

We require the duration of the time-domain response associated with ρ1(ω)W (ω) to be less

than 2d1/c, in order to distinguish between the response due to the first and the other layers.

The time-domain response associated with ρ1(ω) may already have duration up to ∼ 2d1/c,

so we must require τ ≪ 2d1/c, or equivalently, ω2 − ω1 ≫ πc/d1. This must be true for all

layers, so

ω2 − ω1 ≫
πc

dmin

, (15)

where dmin ≤ minj dj is a lower bound for the (possibly unknown) layer thicknesses. In addi-

tion to condition (15), we recall that the time-domain response associated with ρ1(ω) must

have duration less than 2dmin/c, which means that the minimum allowable layer thickness is

limited by the narrowest dispersion feature in the structure.
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The response h1(t) ∗w(t) (where ∗ denotes convolution) is no longer guaranteed to vanish

for t < 0, so we must extend the lower integration limit in Eq. (12) to contain the pulse w(t):

ρ1(ω)W (ω) =

∫

2d1/c+tw

tw

h1(t) ∗ w(t) exp(iωt)dt. (16)

Here tw is the “start position” of w(t), i.e., a possibly negative number such that the response

from the first layer roughly is contained in the interval [tw, 2d1/c+ tw]. Eq. (16) leads to the

result ρ1(ω)W (ω) rather than ρ1(ω); i.e., the response of the single layer has been filtered

with W (ω). Thus we must make sure that the bandwidth [ω1, ω2] of the window function

matches that of the dispersion of n1(ω) to be reconstructed.

2.B. Unknown layer thicknesses

We will now describe how the layer peeling algorithm also can be used when the layer

thicknesses are not known a priori. Recall that the time-domain responses associated with

ρj(ω) have duration less than 2dmin/c for all j. Starting at a layer boundary, one can then

perform layer peeling a distance dmin using Eq. (13), and calculate the resulting time-domain

response. This removes the effect of the layer boundary, and the first signal in the transformed

time-domain response is due to reflection from the next layer boundary. Let ti denote the start

position of this signal and let tw denote the start position of w(t). If ti > tw, this indicates

that dmin is less than the layer thickness. Define a small thickness ∆, which is sufficiently

small to achieve the desired, spatial resolution. Then we can transform the fields successively

using Eq. (3) with the small thickness ∆ until ti = tw, and we have arrived at an index step.

We can then peel off the dispersive response associated with the index step and search for the

next layer boundary, and so forth. If W (ω) only is nonzero in the interval ω1 ≤ ω ≤ ω2, the

time-domain responses do not have well-defined fronts, and the procedure above for finding

the layer thickness is ambiguous. However, one can use an alternative definition for the start

position of the time domain signals, as shown in the numerical examples.

2.C. Effect of noise

For any real system there is a given signal-to-noise ratio, which may be frequency dependent

[18]. The layer peeling algorithm will fail if the reflection signal at a given index step becomes

less than the noise. This can be due to either low Fresnel reflection from the index step itself,

or high reflection or material absorption in the preceding part of the structure. The case

with high reflection in the preceding part of the structure was analyzed in Ref. [19], and

it was shown that the noise amplification factor during the layer peeling algorithm was of

the order of 1/Tmin where Tmin is the minimum power transmission through the structure. A

similar conclusion can be reached by considering the effect of absorption. Let ̺ denote the
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minimum detectable reflection coefficient. The maximum probing depth, d, into a material

with a single index step can be estimated by

exp[−2Im(n)ωd/c]
∆n

2n
≈ ̺, (17)

where ∆n is the change in the real part of the refractive index and n is the average real part

of the refractive index at the step. Solving for the the maximum probing depth, we obtain

d ≈
c

2ωIm(n)
ln

(

∆n

2n̺

)

. (18)

We observe that the maximum probing depth into the structure is inversely proportional

to the material absorption. Assuming ̺ = 10−4, ω = 2π · 1012 s−1, ∆n/(2n) = 10−2, and

Im(n) = 0.01 gives d ≈ 1 cm, which corresponds to ∼ 30 wavelengths. This is roughly the

maximum depth one can expect the layer peeling algorithm to work for a material with

comparatively low loss in the THz-range.

3. Numerical examples

As a first numerical example of the algorithm in Sec. 2, we consider a structure consisting

of two material layers. We assume vacuum for z < 0, a material with refractive index n1 for

0 ≤ z < d1, and a material with refractive index n2 for z ≥ d1. Both materials are assumed

to be dispersive and lossy. The task is to determine n1, n2, and d1, given knowledge of the

reflection coefficient at z = 0− in a finite frequency range. The refractive index of the first

material is assumed to be in the form

n(ω) = nc

√

1 +
χ(ω)

n2
c

, (19)

where nc is constant, and χ(ω) represents a Lorentzian absorption feature, given by

χ(ω) =
Fω2

0

ω2
0 − ω2 − iGω

. (20)

We take nc = 1.5, ω0 = 5ωs, F = 0.1, and G = 5ωs for the first material. Here ωs = 2πfs,

where fs is a scaling frequency. Note that nc must approach 1 as ω → ∞ for the refractive

index in Eq. (19) to be causal. However, we here use the approximation that nc is constant

in the frequency range ω1 ≤ ω ≤ ω2 and assume that nc has the correct behavior as ω → ∞.

The refractive index of the second material is also assumed to be in the form Eq. (19), with

nc = 1.5, but here the susceptibility is taken to be the sum of ten Lorentzian absorption

features of various amplitudes, bandwidths, and center frequencies, in the vicinity of ω0 =

0.8ωs. The resulting refractive index is seen in Fig. 6. In this example, we set fs = 1 THz,

which leads to the vacuum wavelength λs = c/fs = 0.3 mm. We take d1 = 3λs, and assume

7
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Fig. 2. Power reflection coefficient and squared magnitude of the window func-

tion for the numerical example.

that the reflection coefficient is known in the frequency range 0–8 THz. The resulting power

reflection coefficient is shown in Fig. 2.

In the layer peeling algorithm, we take dmin = 2λs. In addition, we must choose an ap-

propriate window function. The window function should have negligible energy outside the

frequency window [ω1, ω2] = [−8 THz, 8 THz]. Additionally, the corresponding time-domain

pulse should have a well-defined front. As a compromise between these two conflicting re-

quirements, we use a Gaussian window function, defined in the time-domain by

w(t) = cos(ωct) exp[−(t/τ)2]. (21)

The width τ of the pulse and its central frequency ωc are chosen to match its spectrum to the

frequency range where the reflection coefficient is known. We use τ = 0.08 ps and ωc = ωs,

which gives the window function W (ω) in Fig. 2. This window function has a small energy

outside [ω1, ω2]. We here set r(ω) = r(ω2) for |ω| > ω2 in the numerical implementation

of the algorithm, in accordance with the assumption that the reflection spectrum outside

[ω1, ω2] is unknown. The lower integration limit in Eq. (16) is set to tw = −0.3 ps.

Figure 3 shows w(t), which represents the incident pulse used to probe the structure. Also

shown is the convolution of the incident pulse and h1(t), which represents the reflected signal

from the structure. The reflected signal consists of two pulses, where the first pulse is due

to reflection at z = 0 and the second pulse is due to reflection at z = d1. We observe that

the duration of the first reflected pulse is similar to the duration of the incident pulse, which

8
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Fig. 3. Incident and reflected pulse at z = 0−. The incident pulse is given by

Eq. (21), which is the time-domain representation of the window function. The

reflected pulse is given by the convolution of the incident pulse and h1(t). The

amplitude of the incident pulse has been scaled a factor 1/10 in the figure.

is due to the comparatively low dispersion of the first layer. Because dmin ≫ πc/(ω2 − ω1),

there is no problem to correctly retrieve the refractive index of the first layer, as shown in

Fig. 4.

Having found the refractive index of the first layer, the next task is to find its thickness,

which is done according to the procedure in Sec. 2. However, care must be taken to define the

start position of the time domain signals, because they do not have a well-defined front, as

discussed in Sec. 2.B. In the numerical implementation of the algorithm we define the start

of the pulse as the first peak in the amplitude, given the amplitude is larger than a certain

noise limit. As noted in Sec. 2.C, if the amplitude of the second reflected pulse becomes too

small, the layer peeling algorithm fails to find the thickness of the first layer. One can also

show that the layer thickness d1 should be determined to within an accuracy of ∆ ≪ πc/ω2.

An incorrect layer thickness leads to oscillations in the retrieved refractive index [20]. For

the present parameters, the retrieved layer thickness is 3.007λs.

Once d1 is found we can ”peel off” the effect of the first layer using Eq. (13), which means

that we transform the reflection coefficient to the position z = d−1 . Fig. 5 shows the incident

pulse, w(t), and the reflected pulse from the second layer. The reflected pulse is calculated

using the transformed reflection coefficient at the position z = d−1 . We observe that the

duration of the reflected pulse is significantly longer than that of the input pulse, which is
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Frequency [THz]
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Re n1 , exact
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(b)
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Fig. 4. Exact and retrieved refractive index of the first layer. (a) Real part and

(b) imaginary part of refractive index. The maximum error in the retrieved

refractive index is 6 · 10−4.
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Fig. 5. Incident and retrieved reflected pulse at z = d−1 . The amplitude of the

incident pulse has been scaled a factor 1/100 in the figure.

10



0 1 2 3 4 5 6 7 8
Frequency [THz]

1.3
1.4
1.5
1.6
1.7
1.8 (a)Re n2 , exact
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Frequency [THz]
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0.4 (b)Im n2 , exact

Im n2 , retrieved

Fig. 6. Exact and retrieved refractive index of the second layer. (a) Real part

and (b) imaginary part of refractive index.

due to the narrow dispersion feature of the second layer. The refractive index of the second

layer is determined in the same manner as for the first layer, and the retrieved refractive

index is shown in Fig. 6. The error in the retrieved refractive index of the second layer is

mainly due to the small inaccuracy in the retrieved d1.

3.A. Effect of too small assumed layer thickness

As noted in Sec. 2, the duration of the time-domain response associated with reflection at

an index step must be much less than 2dmin/c for the layer peeling algorithm to work. If

material dispersion is weak, the duration of the time-domain response is mainly given by

the duration of the window function w(t). Assuming τ = 0.08 ps, as in the first example, we

must chose dmin ≫ cτ/2 = 0.04λs for successful retrieval of the refractive index in the first

layer. As an example where dmin is marginally too small, we set dmin = 0.25λs, with otherwise

the same parameters as in the first example. The retrieved refractive index of the first layer

is shown in Fig. 7. We observe that the retrieved refractive index deviates significantly from

the exact refractive index. In addition, the layer peeling algorithm fails to find the correct

layer thickness in this case due to the residual time-domain response in h1(t) caused by

incomplete removal of the first layer.
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Fig. 7. Exact and retrieved refractive index of the first layer when dmin =

0.25λs. (a) Real part and (b) imaginary part of refractive index.
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Fig. 8. Exact and retrieved refractive index of the first layer in the presence of

noise. (a) Real part and (b) imaginary part of refractive index.
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Fig. 9. Incident and retrieved reflected pulse at z = d−1 in the presence of noise.

The incident pulse (including the noise) has been scaled a factor 1/100 in the

figure.
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Fig. 10. Exact and retrieved refractive index of the second layer in the presence

of noise. (a) Real part and (b) imaginary part of refractive index.
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Fig. 11. Power reflection coefficient and squared magnitude of window function

for the structure with three layers.

3.B. Effect of noise

As an example of the influence of noise on the layer peeling algorithm, we consider the same

structure as in the first example, but with noise added to the input pulse w(t). The noise is

assumed to be white and Gaussian, with mean value 0, standard deviation 5 ·10−5, and time

1/(200 THz) between the samples. The signal to noise ratio is thus proportional to W (ω) in

the frequency domain. The retrieved refractive index of the first layer is shown in Fig. 8. As

expected, the influence of the noise is most severe at high frequencies, where the signal-to

noise ratio is small. We can estimate the maximum probing depth using Eq. (18). Because

the loss is not constant over the frequency range where the reflection coefficient is known,

we use the approximate values at f = 4 THz, where Im(n) ≈ 0.035, ∆n/(2n) ≈ 0.01, and

̺ ≈ 5 · 10−5, giving d ≈ 3λs for the maximum layer thickness of the first layer where we

can expect the layer peeling algorithm to work. Figure 9 shows the reflected pulse from the

second layer, as determined from the layer peeling algorithm, and Fig. 10 shows the retrieved

refractive index of the second layer, in the presence of noise. We observe that the retrieved

refractive index is erroneous above 4 THz, which is due to the low signal to noise ratio at

increasing frequency. When the thickness of the first layer becomes much larger than 3λs,

the reconstructed refractive index also becomes inaccurate at lower frequencies.
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Fig. 12. Incident and reflected pulse at z = 0− for the structure with three

layers. The amplitude of the incident pulse has been scaled a factor 1/5 in the

figure.
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Fig. 13. Exact and retrieved refractive index of the first layer for the structure

with three layers. (a) Real part and (b) imaginary part of refractive index.
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Fig. 14. Exact and retrieved refractive index of the second layer for the struc-

ture with three layers. (a) Real part and (b) imaginary part of refractive index.
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(b)
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Fig. 15. Exact and retrieved refractive index of the third layer. (a) Real part

and (b) imaginary part of refractive index.
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3.C. Structure with three layers

As a final example, we will consider a structure with three layers, with vacuum for z <

0. The refractive index of the first and third layer is the same as in the first example,

and the refractive index of the second layer is 1. The thickness of the first and second

layer is d1 = d2 = λs, with d3 = ∞. We take dmin = λs/2 in the layer peeling algorithm

and use the same window function as in the first example. Figure 11 shows the power

reflection coefficient of the structure. The corresponding time-domain pulses reflected from

the structure are shown in Fig. 12. Using the layer peeling algorithm we retrieve the refractive

indices and layer thicknesses of the structure. The retrieved refractive index of layer 1–3

are shown in Figs. 13-15, respectively. We observe that there are errors in the retrieved

refractive index at high frequencies. The errors increase and approach shorter frequencies

for the successive layers. This is due to the unknown reflection coefficient above 8 THz.

Because the window function has a small energy above this frequency, the unknown part of

the reflection coefficient causes an unphysical precursor to each reflected pulse in the time-

domain response. The errors in retrieved refractive index are here due to the overlap between

the main pulse from one layer and the precursor from the pulse reflected from the next layer.

For the present parameters, this type of error in the retrieved refractive index is strongly

reduced if the reflection coefficient is assumed known up to 12 THz instead of 8 THz. We

also find that an incorrect retrieved thickness of the first layer will lead to increasingly large

errors in the retrieved refractive indices of the following layers. For the present parameters,

an error of 10−3λs in d1 leads to large errors in the retrieved n2 and especially n3.

4. Impossibility of inverse scattering for large dispersion

We will now prove that for dispersive structures, the inverse scattering problem does not

have a unique solution in general. To this end, we consider the Fresnel reflection coefficient

ρ1(ω) associated with a single index step, from n0(ω) to n1(ω), and prove that this reflection

coefficient can also be realized as a lossless and dispersionless structure; a stack of discrete

reflectors in vacuum, or equivalently, a layered structure.

Let ρ̄11, ρ̄
2
1, . . . be the reflection coefficients of the discrete reflectors, and ∆ the distance

between the reflectors. We choose
2∆

c
=

2π

2ωmax

, (22)

in accordance with the considered bandwidth, from −ωmax to ωmax. Initially we set ρ11(ω) =

ρ1(ω). By causality

ρ11(ω) =

∫

∞

0

h1

1(t) exp(iωt)dt (23)

for a real time-domain response h1
1(t).
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We now discretize the continuous response h1
1(t), leading to h1

1[j]:

ρ11(ω) =

∞
∑

j=0

h1

1[j] exp(iωj2∆/c) (24)

in the bandwidth |ω| ≤ ωmax. If ρ
1
1(ω) were zero outside this bandwidth, the Nyquist sampling

theorem would immediately give the connection between h1
1[j] and h1

1(j2∆/c). In general,

however, the exact relation is found by extending ρ11(ω) to a periodic function with period

2ωmax, and setting h1
1[j] equal to the associated Fourier coefficients. With this procedure,

Eqs. (23) and (24) would be identical in the relevant bandwidth, however with lower limit

−∞ in the sum (24). Setting the lower limit to 0 amounts to finding the optimal causal and

discrete approximation to expression (23). In the limit where ρ11(ω) vanishes for |ω| > ωmax,

the error in the approximation tends to zero.

Assuming that the discrete response h1
1[j] is the reflection from a stack of discrete, loss-

less reflectors, we can perform layer peeling identifying the reflectors. By causality the first

reflector is given by

ρ̄11 = h1

1[0]. (25)

Note that the reflector ρ̄11 is real, since the time-domain response h1
1(t), and therefore h1

1[j],

is real: h1
1(t) is a physical time-domain response as resulting from a real impulse. Peeling off

this reflector, and removing the subsequent pure propagation in the layer with thickness ∆,

can be done with the associated transfer matrices, or equivalently, by applying the Schur

recursion formula [7, 8, 16]

ρ21(ω) = exp(−iω2∆/c)
ρ11(ω)− ρ̄11
1− ρ̄11ρ

1
1(ω)

. (26)

The layer peeling process can be continued until all reflectors have been found.

In other words, two different structures give the same reflection response ρ1(ω); an index

step between n0(ω) and n1(ω), and several layers with non-dispersive, real refractive indices.

To be able to solve the inverse scattering problem of a dispersive structure, it is therefore

apparent that extra information (in addition to the reflection spectrum) must be known.

In Sec. 2 we used the extra information that the dispersion is sufficiently small, such that

the time-domain response associated with each Fresnel reflection has duration less than the

round-trip time to the next index step. In addition we assumed dj ≫ πc/(ω2 − ω1) for all j.

5. Conclusion

An inverse scattering algorithm is applied to retrieve the material parameters of stratified

structures. Even though this problem does not have a unique solution in general, there

exist cases where the algorithm can be applied, given additional information about the
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structure. Specifically, for a given, lower bound of the layer thicknesses, the dispersion must

be sufficiently small, and the frequency range where the reflection coefficient is known must

be sufficiently large. The retrieval of material parameters of hidden layers is challenging due

to absorption, noise, and unknown layer thicknesses. Despite these challenges, there exist

cases where the algorithm is successful, as illustrated by the numerical examples.
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