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Abstract: This paper analyzes an integral line-of-sight guidance law applied to an underac-
tuated underwater vehicle. The vehicle is rigorously modeled in 5 degrees of freedom using
physical principles, and it is taken into account that the vehicle is not necessarily neutrally
buoyant. The closed-loop dynamics of the cross-track error are analyzed using nonlinear cascaded
systems theory, and are shown to achieve uniform semiglobal exponential stability. Hence, the
integral line-of-sight guidance law compensates for the lack of neutral buoyancy, and it is no
longer necessary to assume that the vehicle is perfectly ballasted. The exponential convergence
properties of the guidance law are demonstrated in simulations of an autonomous underwater
vehicle.
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1. INTRODUCTION

Guidance laws for underactuated marine vehicles makes it
possible for vehicles equipped with fixed stern propellers
and steering rudders to achieve control goals such as
path following, tracking and maneuvering, described in
Encarnação and Pascoal (2001), Breivik and Fossen (2009)
and Fossen (2011). Precise path following is of particular
importance in operations such as inspection of submarine
pipelines, seabed mapping, and environmental monitoring.

The line-of-sight (LOS) path following principle, used
in Healey and Lienard (1993), Pettersen and Lefeber
(2001), Fossen et al. (2003), Breivik and Fossen (2004)
and Fredriksen and Pettersen (2006), aims the vessel to-
wards a point ahead on the path. Pettersen and Lefeber
(2001) proved uniform global asymptotic and uniform local
exponential stability (UGAS and ULES, or κ-exponential
stability as defined in Sørdalen and Egeland (1995)) of
the LOS guidance law in connection with a 3 degrees of
freedom (3-DOF) vehicle model. A more complete vehicle
model was included in Børhaug and Pettersen (2005) and
Fredriksen and Pettersen (2006), while Fossen and Pet-
tersen (2014) proved that the LOS guidance law achieves
uniform semiglobal exponential stability (USGES), which
gives stronger convergence and robustness properties.
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Integral action was added to the LOS guidance law in
Børhaug et al. (2008) to compensate for environmental
kinematic disturbances such as ocean currents. The result-
ing integral line-of-sight (ILOS) guidance law for 3-DOF
vehicles was proved to be globally κ-exponentially stable
in Caharija et al. (2012a) and Caharija et al. (2014), and
USGES and UGAS in Wiig et al. (2015).

ILOS guidance was applied to underwater vehicles mod-
eled in 5-DOF in Caharija et al. (2012b) and Caharija
et al. (2016), which added an ILOS guidance law in the
vertical plane. The system was again shown to achieve κ-
exponential stability.

All of the above mentioned works assume that the vehicle
is neutrally buoyant, which requires perfect ballasting. In
practice this can be difficult to achieve since water density
changes with salinity, temperature and depth. This paper
investigates the effect of positive or negative buoyancy
on an underactuated underwater vehicle controlled by
an ILOS guidance law. The 5-DOF kinematic and dy-
namic model used in Caharija et al. (2012b) and Caharija
et al. (2016), which includes kinematic disturbances from
constant and irrotational ocean currents, is extended to
include effects caused by the lack of neutral buoyancy.
The main contribution of the paper is to use the results
of Fossen and Pettersen (2014) and Wiig et al. (2015) to
prove that the closed-loop cross track error dynamics are



UGAS and USGES, even when the vehicle is not neutrally
buoyant.

This paper is organized as follows: Section 2 gives a
description of the vehicle model in 5-DOF, and states the
control objective. Section 3 describes the ILOS guidance
law and the surge, pitch and yaw controllers that are
analyzed in this paper. The stability of the closed-loop
system is analyzed in Section 4. Simulations demonstrating
exponential stability are shown in Section 5, and some
concluding remarks are given in Section 6.

2. SYSTEM DESCRIPTION

2.1 Basic assumptions

The following basic assumptions are used in the modeling
and analysis of the system:

Assumption 1. The body-fixed coordinate frame b is lo-
cated at a point (xg, 0, 0) from the vehicle’s center of
gravity (CG), along the center line of the vessel.

Assumption 2. The vehicle is passively stable in roll, and
roll motion can hence be neglected.

Assumption 3. The difference between vehicle weight W
and buoyancy B, defined as WE = W − B, is assumed
known and constant. Furthermore, CG and the center of
buoyancy (CB) are located on the same vertical axis in b.

Remark 1. This is a relaxation of the neutral buoyancy
assumption in previous works, such as Caharija et al.
(2016).

Assumption 4. The vehicle is symmetric in the x−z plane
and has a large length to width ratio.

Assumption 5. The surge mode is decoupled from the
other degrees of freedom, and only couplings in sway-yaw
and heave-pitch are considered.

Assumption 6. The damping is considered linear.

Remark 2. The passive nature of nonlinear damping forces
should enhance the directional stability of the vehicle, as
noted in Caharija et al. (2016).

Assumption 7. The ocean current vvvc , [Vx, Vy, Vz]
T in the

inertial frame i is assumed to be constant, irrotational and
bounded. Hence, there exists a constant Vmax ≥ 0 such

that Vmax ≥
√
V 2
x + V 2

y + V 2
z .

2.2 System Model

The vehicle is modeled in 5-DOF with ηηη , [x, y, z, θ, ψ]T

containing position and orientation in the inertial frame
i. The velocity of the vessel in the body-fixed coordinate
frame b is represented by ννν , [u, v, w, q, r]T , where u is
surge speed, v is sway speed, w is heave speed, q is pitch
rate and r is yaw rate.

The current velocity in the body frame b is νννc =
RRRT (θ, ψ)vvvc = [uc, vc, wc]

T , where RRR(θ, ψ) is the rotation
matrix from b to i given in (3). From Assumption 7 it
follows that v̇vvc = 000 and ν̇ννc = [rvc − qwc,−ruc, quc]T .

The vessel model is represented using velocities relative
to the ocean current, as described in Fossen (2011). The

body-fixed relative velocity is given by νννr , ννν − νννc =

[ur, vr, wr, q, r]
T , where ur, vr and wr are relative surge,

sway and heave speed. The 5-DOF model of the vehicle is

η̇ηη = JJJ(ηηη)νννr + νννc, (1a)

MMMν̇ννr +CCC(νννr)νννr +DDDνννr + ggg(ηηη) = BBBfff, (1b)

where MMM = MMMT > 0 is the mass and inertia matrix
including hydrodynamic added mass, the matrix CCC con-
tains Coriolis and centripetal terms, and DDD(νννr) is the
hydrodynamic damping matrix. The matrix BBB ∈ R5×3 is
the actuator configuration matrix, while fff , [Tu, Tq, Tr]

T

is the control input vector with surge thrust Tu, pitch
rudder angle Tq and yaw rudder angle Tr. The term JJJ(ηηη)
is the velocity transformation matrix

JJJ(ηηη) ,

[
RRR(θ, ψ) 0

0 TTT (θ)

]
, (2)

where TTT (θ) , diag(1, 1/ cos(θ)), |θ| 6= π
2 .

Following Assumption 3, the gravity restoration vector
ggg(ηηη) , [WE sin(θ), 0,−WE cos(θ), (BGzW+WEzb) sin(θ),
0]T , where BGz is the vertical distance between CG and
CB and zb is the z-coordinate of the center of buoyancy
in the body frame. Compared to the gravity restoration
vector used in Caharija et al. (2016), the vector ggg(ηηη)
includes additional forces in surge and heave resulting from
WE , as well as an addition to the moment in pitch.

The matrix CCC is obtained from MMM as described in Fossen
(2011), while the other system matrices can be expressed
as:

RRR ,

[
cψcθ −sψ cψsθ
sψcθ cψ sψsθ
−sθ 0 cθ

]
,DDDl ,


d11 0 0 0 0
0 d22 0 0 d25

0 0 d33 d34 0
0 0 d43 d44 0
0 d25 0 0 d55

 ,

MMM ,


m11 0 0 0 0

0 m22 0 0 m25

0 0 m33 m34 0
0 0 m43 m44 0
0 m25 0 0 m55

 ,BBB ,


b11 0 0
0 0 b23

0 b32 0
0 b42 0
0 0 b53

 .
(3)

The terms s· , sin(·) and c· , cos(·) are used for brevity.

The structure of the system matrices is justified by As-
sumptions 2 - 6. The point xg from Assumption 1 is
chosen to lie on the pivot point of the ship, which gives
MMM−1BfBfBf = [τu, 0, 0, τq, τr]

T , where τu is the control force
in surge, and τq and τr is the control moment in pitch and
yaw.

2.3 System Model in Component Form

The 5-DOF model in (1) can be represented in component
form:

ẋ = urcψcθ − vrsψ + wrcψsθ + Vx, (4a)

ẏ = ursψcθ + vrcψ + wrsψsθ + Vy, (4b)

ż = −ursθ + wrcθ + Vz, (4c)

θ̇ = q, (4d)

ψ̇ = r/cθ, (4e)

u̇r = Fur
(θ, vr, wr, r, q)−

d11

m11
ur + τu, (4f)

v̇r = Xvr (ur)r + Yvr (ur)vr, (4g)



ẇr = Xwr (ur)q + Ywr (ur)wr
+ Zswr

sθ + Zcwr
cθ,

(4h)

q̇ = Fq(θ, ur, wr, q) + τq. (4i)

ṙ = Fr(ur, vr, r) + τr. (4j)

The terms Fur
, Xvr , Yvr , Xwr

, Ywr
, Zswr

, Zcwr
, Fq and Fr

are defined in Appendix A. The lack of neutral buoyancy
affects u̇r, ẇr and q̇ through Fur

, Zswr
, Zcwr

and Fq.

Assumption 8. For all ur ∈ [−Vmax, Urd], where Urd is the
constant desired surge speed, the functions Yvr (ur) and
Ywr

(ur) satisfy

Yvr (ur) ≤ −Yvr,min < 0, (5)

Ywr
(ur) ≤ −Ywr,min < 0. (6)

This ensures that the system is damped and nominally
stable in sway and heave, which is the case for commercial
vehicles.

2.4 Control objective

The objective of the control system is to make the vehicle
modeled by (1) converge to and follow a straight-line path.

Assumption 9. The desired path P is horizontal.

Remark 3. A non-horizontal path will result in an addi-
tional bounded constant disturbance due to gravity, which
the control system presented in this paper compensates
for.

The path should be followed in the presence of unknown,
constant and irrotational current while keeping a con-
stant relative surge speed Urd > 0. Without any loss of
generality, the inertial reference frame i is placed such
that its x-axis is aligned with the desired path, so that
P , {(x, y, z) ∈ R3 : y = 0, z = 0}. The objectives of the
control system are formalized as

lim
t→∞

y(t) = 0, lim
t→∞

ψ(t) = ψss, ψss ∈
(
−π

2
,
π

2

)
, (7a)

lim
t→∞

z(t) = 0, lim
t→∞

θ(t) = θss, θss ∈
(
−π

2
,
π

2

)
, (7b)

lim
t→∞

ur(t) = Urd, (7c)

where ψss and θss is a constant yaw and heading angle
required to keep the underactuated vessel at the path,
compensating for a constant and irrotational ocean cur-
rent, as well as for WE .

The following assumption ensures that the vessel is able
to follow the path for any direction of the ocean current:

Assumption 10. The desired relative surge speed Urd is
such that

Urd > max

{
Vmax +

5

2

|Zswr
|+ 0.5|Zcwr

|
|Ywr (Urd)|

,

2Vmax + 2
|Zswr |+ 0.5|Zcwr |
|Ywr

(Urd)|

}
.

Note that Assumption 10 is stricter than the assumption
on Urd in Caharija et al. (2016). This is due to the presence
of WE in Zswr

and Zcwr
.

3. CONTROL SYSTEM

This section presents a control system for the path follow-
ing problem presented in Section 2.4.

3.1 The ILOS guidance law

The desired pitch θd and heading ψd are given by the ILOS
guidance law introduced in Caharija et al. (2012b):

θd , tan−1(
z + σzzint

∆z
), ∆z > 0, σz > 0, (8a)

żint ,
∆zz

(z + σzzint)2 + ∆2
z

, (8b)

ψd , − tan−1(
y + σyyint

∆y
), ∆y > 0, σy > 0, (8c)

ẏint ,
∆yy

(y + σyyint)2 + ∆2
y

. (8d)

The look-ahead distances ∆z and ∆y, and the integral
gains σz and σy are constant design parameters. The
auxiliary integral states zint and yint creates a nonzero
desired heading and pitch even when the vehicle is on
the path, making the vehicle counteract disturbances. The
integral term growth rates (8b) and (8d) are designed to
decrease for large cross-track errors z and y, reducing the
risk of wind-up effects.

3.2 Surge, pitch and yaw controllers

Surge, pitch and yaw are controlled using feedback lin-
earizing controllers along the lines of Caharija et al. (2016),
and the surge controller has been extended with integral
effect:

τu = −Fur
(vr, wr, θ, r, q) + d11Urd/m11

− kur
(ur − Urd)− ki,ur

∫ t

t0

(ur − Urd),
(9)

τq = −Fq(θ, ur, wr, q) + θ̈d − kθ(θ − θd)
− kq(q − θ̇d),

(10)

τr = −Fr(ur, vr, r)− q sin(θ)ψ̇

+ cos(θ)
[
ψ̈ − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d)

]
.

(11)

The control gains kur , ki,ur , kθ, kq, kψ and kr are con-
stant and positive, and t0 denotes the starting time. The
integral term in the control law for τu has been added for
robustness to modeling errors in the terms canceled out
by Fur , e.g. the buoyancy error term WE .

4. STABILITY OF THE CLOSED-LOOP SYSTEM

This section analyzes the stability properties of the com-
plete vessel kinematics and dynamics. The terms XUrd

wr
=

Xwr (Urd), Y
Urd
wr

= Ywr (Urd), X
Urd
vr = X(Urd) and Y Urd

vr =
Y (Urd) are used for brevity. Furthermore, the constants
Γmax and Γinf and the functions Γ(ξ) and ρ(σz) are defined
as:

Γ(ξ) , Urd
1√
ξ2 + 1

− Zswr
ξ + Zcwr

Y Urd
wr

ξ

ξ2 + 1
, (12)

Γinf ,
1√
5
Urd −

4

5

|Zswr
|+ 0.5|Zcwr

|
|Y Urd
wr |

, Γmax , Urd, (13)

ρ(σz) ,
Urd − Vmax − σz

Urd − Vmax − σz − 5
2
|Zswr |+0.5|Zcwr |

|Y Urd
wr |

. (14)

The constant ξ is defined in Section 4.1, where it is shown
that Γinf < Γ(ξ) ≤ Γmax.



Theorem 1. If Assumptions 7 to 10 hold and the look-
ahead distances ∆y and ∆z satisfy

∆y >
|XUrd

vr |
|Y Urd
vr |

[
5

4

Γmax + Vmax + σy
Γinf − Vmax − σy

+ 1

]
, (15)

∆z >
|XUrd

wr
|

|Y Urd
wr |

ρ(σz)

[
5

4

Urd + Vmax + σz
Urd − Vmax − σz

+ 1

]
, (16)

and the integral gains σy and σz satisfy

0 < σy < Γinf − Vmax, (17)

0 < σz < Urd − Vmax −
5

2

|Zswr |+ 0.5|Zcwr |
|Y Urd
wr |

, (18)

then the controllers (9) - (11) and guidance laws (8)
guarantee achievement of the control objectives (7). The
control objectives (7a)-(7b) are fulfilled with ψss =

− tan−1(Vy/
√

Γ(ξ)2 − V 2
y ) and θss = tan−1(ξ). Further-

more, the equilibrium point of the error dynamics is US-
GES and UGAS.

Remark 4. The Zcwr term in the bound on Urd, ∆y, ∆z,
σy and σz is the result of the vehicle not being neutrally
buoyant, as can be seen in the definition of Zcwr (A.6).

4.1 Proof of Theorem 1

The error signals of the actuated dynamics are collected
in ζζζ , [ũint, ũr, θ̃, q̃, ψ̃, r̃]

T , where ũr , ur − Urd, ũint ,∫ t
t0

(ũr), θ̃ = θ− θd, q̃ , q− θ̇d, ψ̃ = ψ−ψd and r̃ , r− ψ̇d.
The closed loop dynamics of ζζζ are obtained by combining
the system equations (4d), (4e), (4f), (4i) and (4j) with the
control laws in surge (9), pitch (10) and yaw (11):

ζ̇ζζ =


0 1 0 0 0 0

−ki,ur
−(kur

+ d11
m11

) 0 0 0 0
0 0 0 1 0 0
0 0 −kθ −kq 0 0
0 0 0 0 0 1
0 0 0 0 −kψ −kr

ζζζ , ΣΣΣζζζ.

(19)

The z−wr subsystem is obtained from (4c), (4h) and (8b):

żint =
∆zz

(z + σzzint)2 + ∆2
z

, (20a)

ż = −ur sin(θ̃ + θd) + wr cos(θ̃ + θd) + Vz, (20b)

ẇr = Xwr
(ũr + Urd)(q̃ + θ̇d) + Ywr

(ũr + Urd)wr

+ Zswr sin(θ̃ + θd) + Zcwr cos(θ̃ + θd).
(20c)

Note that the buoyancy terms Zswr and Zcwr show up in
the underactuated heave dynamics (20c).

The calculation of the equilibrium point of (20) on the
manifold ζζζ = 000 gives the equations

ξ
√
ξ2 + 1 =

Vz
Urd

(ξ2 + 1)− Zswrξ + Zcwr

UrdY
Urd
wr

, (21a)

weq
r = Urdξ − Vz

√
ξ2 + 1, (21b)

where ξ , σzz
eq
int/∆z, and zeq

int and weq
r is the value of zint

and wr at equilibrium.

Using the technique of (Caharija et al., 2016, Lemma IV.1)
it can be shown that there exists at least one real solution
for (21). Since the equilibrium point is later proven to be
UGAS and USGES, the solution is unique. The steady

state pitch angle is then θss = tan−1(ξ). Furthermore,
Assumption 10 can be used to give the following bound:∣∣∣∣ VzUrd (ξ2 + 1)− Zswr

ξ + Zcwr

UrdY
Urd
wr

∣∣∣∣ < 1

2

(
ξ2 + 3 + |ξ|

)
(22)

Inserting (21a) into (22) and solving for ξsup > |ξ| > 0
gives ξsup ≈ 2. Hence, Γinf < Γ(ξ) ≤ Γmax holds, where
Γ(ξ) is defined in (12), and Γinf and Γmax in (13).

A change of variables is introduced to obtain a system with
the equilibrium point at the origin:

ez1 , zint−zeq
int, ez2 , z+σzez1, ez3 , wr−weq

r . (23)

After factorizing with respect to ζζζ, the interconnected
dynamics of (19) and (20) can be expressed in cascade
form as

ėeez = AAAz(eeez)eeez +BBBz(eeez) +HHHz(z, zint, θd, wr, ζζζ)ζζζ, (24a)

ζ̇ζζ = ΣΣΣζζζ, (24b)

where eeez , [ez1, ez2, ez3]T , AAAz is given in (26) while BBBz is:.

BBBz ,


0

Vzf(ez2)
∆zX

Urd
wr

Vzf(ez2)

kz(ez2)
− Zswrξ + Zcwr√

ξ2 + 1
f(ez2)

 (25)

The interconnection matrix HHHz contains all the terms
vanishing at ζζζ = 0 and is given by

HHHz ,


0 0
1 0

∆z

(
Xwr

(ũ+ Urd)−XUrd
wr

)
kz(ez2)

1

[hhhTzhhhTwr

]
, (27)

where hhhz and hhhwr
are given in Appendix A. The term

kz(ez2) is defined as

kz(ez2) , (ez2 + σzz
eq
int)

2 + ∆2
z, (28)

and f(ez2) is defined as

f(ez2) , 1−
√

(σzz
eq
int)

2 + ∆2
z√

kz(ez2)
. (29)

Note that f(ez2) is bounded by

|f(ez2)| ≤ |ez2|√
kz(ez2)

. (30)

The nominal system of the cascade in (20) is

ėeez = AAAz(eeez)eeez +BBBz(eeez). (31)

Lemma 2. Under the conditions of Theorem 1, the equi-
librium point of the system (31) is UGAS and USGES.

Proof. The proof of Lemma 2 is given in Appendix B

Lemma 3. Under the conditions of Theorem 1, the equi-
librium point of the complete system (24) is UGAS and
USGES.

Proof. The system (24) is a cascaded system, consisting
of a linear system (24b) which perturbs the dynamics (24a)
through the interconnection matrix HHHz. The matrix HHHz

can be shown to satisfy ||HHHz|| ≤ δ1(||ζ||)(|z| + |zint| +
|wr|) + δ2(||ζ||), where δ1(·) and δ2(·) are some continuous
non-negative functions.

The perturbing system (24b) is a linear, time-invariant
system. Furthermore, since the gains kur , ki,ur , kψ, kr



AAAz ,


− σz∆z

kz(ez2)
∆z

kz(ez2) 0

− σ2
z∆z

kz(ez2) − Urd√
kz(ez2)

+ σz∆z

kz(ez2)
∆z√
kz(ez2)

−σ
2
z∆2

zX
Urd
wr

kz(ez2)2

(
−Urd∆zX

Urd
wr

kz(ez2)3/2
+

σz∆2
zX

Urd
wr

kz(ez2)2 +
Zswr√
kz(ez2)

) (
Y Urd
wr

+
∆2

zX
Urd
wr

kz(ez2)3/2

)
 (26)

and the term d11/m11 are all strictly positive, the system
matrix ΣΣΣ is Hurwitz and the origin ζζζ = 000 is UGES.

The nominal system is USGES by Lemma 2. Hence all
the conditions of (Loria and Panteley, 2004, Proposition
2.3) are satisfied, guaranteeing USGES and UGAS of the
equilibrium point (eeez, ζζζ) = (000,000) of (24). 2

By Lemma 3, the control objective (7b) is achieved with
exponential convergence properties and steady state pitch

angle θss = tan−1(
σzz

eq
int

∆z
). Let χχχ = [eeeTz , ζζζ

T ] be a vector
containing the exponentially converging error variables
from (24). The complete vehicle kinematics and dynamics
form a cascaded system where (24) perturbs the y − vr
subsystem, which is obtained from (4b), (4g) and (8d):

ẏint =
∆yy

(y + σyyint)2 + ∆2
y

, (32a)

ẏ = ur sin(ψ̃ + ψd) cos(θ̃ + θd) + vr cos(ψ̃ + ψd)

+ wr sin(ψ̃ + ψd) sin(θ̃ + θd) + Vy,
(32b)

v̇r = Xvr (ũr + Urd, r̃ + rd)(
˙̃
ψ + ψ̇d) cos(θ̃ + θd)

+ Yvr (ũr + Urd, vr)vr.
(32c)

The equilibrium point of (32) on the manifold χχχ = 000 is
given by

yeq
int =

∆

σ

Vy√
Γ(ξ)2 − V 2

y

, yeq = 0, veq
r = 0, (33)

where Γ(ξ) is defined in (12). A change of variables is
introduced to obtain a system with the equilibrium point
at the origin:

ey1 , yint − yeq
int, ey2 , y + σey1, ey3 , vr. (34)

After factorizing with respect to χχχ and substituting (8c)
and (8a) for ψd and θd, the system in cascaded form
becomes

ėeey = AAAyeeey +BBBy +HHHy(y, yint, θd, ψd, vr,χχχ)χχχ, (35a)

χ̇χχ =

[
AAAz HHHz

000 ζζζ

]
χχχ+

[
BBBz
000

]
(35b)

where eeey , [ey1, ey2, ey3]T , AAAy(ey2) is given in (37) while

BBBy(ey2) ,


0

Vyf(ey2)

− 1√
ξ2 + 1

∆yX
Urd
vr Vy

ky(ey2)
f(e2)

 . (36)

The interconnection matrix HHHy contains all the terms
vanishing at χχχ = 0 and is given by

HHHy ,

 0 0
1 0

−
∆y

(
Xvr (ũr+Urd)−XUrd

vr

)
cos(θ̃+θd)

ky(ey2) 1

[hhhTy
hhhTvr

]
, (38)

where hhhy and hhhvr are given in Appendix A. The term
ky(ey2) is defined as

ky(ey2) , (ey2 + σyy
eq
int)

2 + ∆2
y, (39)

and g(ey2) is defined as

g(ey2) , 1−

√
(σyy

eq
int)

2 + ∆2
y√

ky(ey2)
, (40)

which is bounded by

|g(ey2)| ≤ |ey2|√
ky(ey2)

. (41)

Lemma 4. Under the conditions of Theorem 1, the origin
of the system (35) is UGAS and USGES.

Proof. Consider the nominal system

ėeey = AAAy(ey2) +BBBy(ey2). (42)

This system is similar to the system (31), with the ex-
ception of the unknown constants ξ and Γ(ξ). However,
since Γ(ξ) is bounded in (13), it is possible to apply
Lemma 2 to conclude UGAS and USGES of the origin
of (42). The origin of the perturbing system (35b) is
shown in Lemma 3 to be UGAS and USGES as well.
Finally, the interconnection matrix HHHy can be shown to
satisfy ||HHHy|| ≤ δ3(||χχχ||)(|y| + |yint| + |vr|) + δ4(||χχχ||),
where δ3(·) and δ4(·) are some continuous non-negative
functions. Hence all the conditions of (Loria and Panteley,
2004, Proposition 2.3) are satisfied, guaranteeing USGES
and UGAS of the equilibrium point (eeey,χχχ) = (000,000) of
(35). 2

By Lemma 4, the control objective (7a) is achieved
with exponential convergence properties and ψss =

tan−1(Vy/
√

Γ(ξ)2 − V 2
y ). Hence, all the control objectives

are met and the proof of Theorem 1 is concluded.

5. SIMULATIONS

This section presents results from numerical simulations
of the ILOS guidance law applied to an underactuated
AUV modeled in 5-DOF. The AUV is tasked to follow
a horizontal path along the x-axis. The desired rela-
tive surge speed is Urd = 2 m/s. The current is vvvc =
[0.1 m/s, 0.3 m/s, 0.3 m/s]. The terms Y Urd

vr and Y Urd
wr

are

bounded by Yvr,min = Ywr,min = 0.63 s−1, and |XUrd
vr | =

|XUrd
wr
| = 1.59 s−1 and |Y Urd

vr | = |Y Urd
wr
| = 1.10 s−1. The

weight of the AUV is 1380 kg, which is 30 kg too heavy
to be neutrally buoyant. This gives Zswr

= 0.08 m2/s2

and Zcwr
= 0.14 m/s2. The ILOS look-ahead distances

and integral gains are ∆y = ∆z = 10 m and σy = σz =
0.2 m/s. The surge, yaw and pitch controllers (9)-(11) are
implemented with kur

= 0.5, ki,ur
= 0.01, kψ = kθ = 1

and kr = kq = 2. It can be confirmed that the conditions of
Theorem 1, as well as all assumptions, are met.The initial
position of the vehicle is 25 m east of and 25 m below the
path, the initial direction is parallel to the path and the
initial velocity is zero.

Figure 1 shows the track of the AUV in the x − z plane.
The vehicle maintains a constant sideslip and pitch angle



AAAy ,


− σy∆y

ky(ey2)
∆y

ky(ey2) 0

− σ2
y∆y

ky(ey2) − Γ(ξ)√
ky(ey2)

+
σy∆y

ky(ey2)
∆y√
ky(ey2)

1√
ξ2+1

σ2
y∆2

yX
Urd
vr

ky(ey2)2
1√
ξ2+1

(
Γ(ξ)∆yX

Urd
vr

ky(ey2)3/2
− σy∆2

yX
Urd
vr

ky(ey2)2

) (
Y Urd
vr − ∆2

yX
Urd
vr

ky(ey2)3/2
√
ξ2+1

)
 (37)
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Fig. 1. Position and pitch of the vehicle in the x− z plane
during the simulation.
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Fig. 2. The cross-track errors y and z of the vehicle.
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Fig. 3. The natural logarithm of ||eeetot||.

after converging to the path, counteracting the current
and vehicle weight. The relative sway velocity vr stabilizes
at zero, while the relative heave velocity wr stabilizes at
0.14 m/s due to the error in buoyancy and the moment
induced by the distance between CG and CB. Figure 2
shows how the cross-track errors y and z converge to zero.
Figure 3 shows the natural logarithm of the Euclidean
norm of the error variables in (35), where eeetot , [eeeTy ,χχχ

T ]T .
Like in Wiig et al. (2015), the term ln(||eeetot||) is upper
bounded by a straight, descending line, corresponding to
a bounding exponential function. Hence, for these initial
conditions and parameters, exponential convergence of the
system is verified.

In many scenarios, the difference between vehicle weight
and buoyancy, WE , will not be readily available. To
investigate robustness with respect to WE , the vehicle has
been simulated with the negative buoyancy unknown to
the controllers. Figure 4 shows the resulting x− z track of
the vehicle, which is still able to follow the path, though
with slightly slower convergence.
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Fig. 4. Position and pitch of the vehicle in the x− z plane
when WE is unknown to the controllers.

6. CONCLUSIONS

In this paper the stability properties of an underactuated
underwater vehicle controlled by an ILOS guidance law
have been investigated. Cascaded system analysis has been
used to prove that the 5-DOF closed loop error dynamics
are USGES, and this property is shown to hold also when
the vehicle is not neutrally buoyant, which is often the
case in practice. By achieving USGES, strong robustness
properties of the system are guaranteed. A negatively
buoyant AUV modeled in 5-DOF has been simulated in
an ocean environment containing constant and irrotational
current, demonstrating exponential stability of the closed
loop error system. It is also demonstrated that the vehicle
is able to follow the path, even when the negative buoyancy
is unknown, which shows robustness of the system.
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Appendix A. FUNCTIONAL EXPRESSIONS

Fur
(θ, vr, wr, r, q) ,

1

m11
[(m22vr +m25r)r

− (m33wr +m34q)q −WE sin(θ)]
(A.1)

Xvr (ur) ,
m2

25−m11m55

m22m55−m2
25
ur + d55m25−d25m55

m22m55−m2
25
, (A.2)

Yvr (ur) ,
(m22−m11)m25

m22m55−m2
25
ur − d22m55−d52m25

m22m55−m2
25
, (A.3)

Xwr
(ur) ,

−m2
34−m11m44

m33m44−m2
34
ur + d44m34−d34m44

m33m44−m2
34
, (A.4)

Ywr
(ur) ,

(m11−m33)m34

m33m44−m2
34
ur − d33m44−d43m34

m33m44−m2
34
, (A.5)

Zswr , (BGzW+zbWE)m34

m33m44−m2
34

, Zcwr , WEm44

m33m44−m2
34
, (A.6)

Fq(θ, ur, wr, q) , − (BGzW+zbWE)m33

m33m44−m2
34

sin(θ)

− WEm34

m33m44−m2
34

cos(θ)

+ m34d33−m33(d43−(m33−m11)ur)
m33m44−m2

34
wr

+ m34(d34−m11ur)−m33(d44−m34ur)
m33m44−m2

34
q

(A.7)

Fr(ur, vr, r) ,
m25d22−m22(d52+(m22−m11)ur)

m22m55−m2
25

vr

+ m25(d25+m11ur)−m22(d55+m25ur)
m22m55−m2

25
r

(A.8)

The vectors hhhz , [{hzi}]T and hhhwr , [{hwri}]T , i = 1..6,
are defined as

hz2 = − sin(θ̃ + θd) (A.9)

hz3 = −Urd
[

sin(θ̃)

θ̃
cos(θd) + cos(θ̃)−1

θ̃
sin(θd)

]
+ wr

[
cos(θ̃)−1

θ̃
cos(θd)− sin(θ̃)

θ̃
sin(θd)

]
,

(A.10)

hz1 = hz4 = hz5 = hz6 = 0, (A.11)

hwr2 =
Xwr (ũr+Urd)−XUrd

wr

ũr
γwr (zint, z, wr)

+
Ywr (ũr+Urd)−Y Urd

wr

ũr
wr

(A.12)

hwr3 = Zswr

[
sin(θ̃)

θ̃
cos(θd) + cos(θ̃)−1

θ̃
sin(θd)

]
(A.13)

hwr4 = Xwr
(ũr + Urd), (A.14)

hwr1 = hwr5 = hwr6 = 0. (A.15)

The vectors hhhy , [{hyi}]T and hhhvr , [{hvri}]T , i = 1..9,
are defined as

hy2 =
Urd
ez2

[
∆z√
kz(ez2)

− 1√
ξ2+1

]
− Zswr ξ

ez2Y
Urd
wr

√
ξ2+1

[
ez2+σzz

eq
int√

kz(ez2)
− ξ√

ξ2+1

]
,

(A.16)

hy3 = sin(θ) sin(ψ), hy5 = cos(θ) sin(ψ) (A.17)

hy6 = Urd sin(ψd)
[

cos(θ̃)−1

θ̃
cos(θd)− sin(θ̃)

θ̃
sin(θd)

]
− Zswr ξ sin(ψd)

Y
Urd
wr

√
ξ2+1

[
sin(θ̃)

θ̃
cos(θd) + cos(θ̃)−1

θ̃
sin(θd)

]
(A.18)

hy8 =

[
Urd cos(θ̃ + θd)− Zswr ξ

Y
Urd
wr

√
ξ2+1

sin(θ̃ + θd)

]
·
[

sin(ψ̃)

ψ̃
cos(ψd) + cos(ψ̃)−1

ψ̃
sin(ψd)

]
+ vr

[
cos(ψ̃)−1

ψ̃
cos(ψd)− sin(ψ̃)

ψ̃
sin(ψd)

] (A.19)

hy1 = hy4 = hy7 = hy9 = 0, (A.20)

hvr2 =
X

Urd
vr

ez2

[
∆z√
kz(ez2)

− 1

ξ2 + 1

]
γvr (yint, y, yr),

(A.21)

hvr5 =
Xvr (ũr+Urd)−XUrd

vr

ũr
cos(θ̃ + θd)γvr (yint, y, yr)

+ vr
Yvr (ũr+Urd)−Y Urd

vr

ũr

(A.22)



hvr6 =
[

cos(θ̃)−1

θ̃
cos(θd)− sin(θ̃)

θ̃
sin(θd)

]
·XUrd

vr γvr (yint, y, yr),
(A.23)

hvr9 = Xvr (ũr + Urd) cos(θ̃ + θd), (A.24)

hvr1 = hvr3 = hvr4 = hvr7 = hvr8 = 0. (A.25)

The expressions γwr
(zint, z, wr) and γvr (yint, y, vr) are de-

fined as

γwr , ∆2
zwr−∆zUrd(z+σzzint)

kz(ez2)3/2
+

σz∆2
z

kz(ez2)2 z + ∆zVz

kz(ez2) , (A.26)

γvr ,
∆yΓ(ξ)(y+σyyint)−∆2

y

ky(ey2)3/2
− σy∆2

y

ky(ey2)2 y −
∆yVy

ky(ey2) . (A.27)

Appendix B. PROOF OF LEMMA 2

The proof follows along the lines of Caharija et al. (2016),
while making use of the comparison lemma (Khalil, 2002,
Lemma 3.4) along the lines of the analysis in Fossen and
Pettersen (2014) and Wiig et al. (2015).

Consider the Lyapunov function candidate:

V , 1
2σ

2e2
z1 + 1

2e
2
z2 + 1

2µe
2
z3, µ > 0. (B.1)

Using (30) and Assumptions 7 and 8, the following bound

can be found for V̇ :

V̇ ≤ −W1(eeez13)−W2(eeez23), (B.2)

where eeez13 , [|ez1|, |ez3|]T and eeez23 , [|ez2|, |ez3|]T .

The function W1 is defined as

W1 =
1

kz(ez2)
eeeTz13QQQ1eee

T
z13, (B.3)

where QQQ1 is

QQQ1 ,

 σ3
z∆z −µσ

2
z

√
kz(ez2)|XUrd

wr |
2∆z

−µσ
2
z

√
ky(ey2)|XUrd

wr |
2∆z

µηkz(ez2)

(
|Y Urd
wr
| − |X

Urd
wr |
∆z

)
(B.4)

and 0 < η < 1. W2 is defined as

W2 ,
∆z

kz(ez2)
eeeTz23QQQ2eeez23, (B.5)

where QQQ2 is

QQQ2 ,

[
β −α

√
kz(ez2)

−α
√
kz(ez2) kz(ez2)α(2α−1)

β

]
. (B.6)

Here, β , Urd − Vmax − σz and α is given by

α , (1− η)
(Urd−Vmax−σz)(∆z|Y

Urd
wr |−|X

Urd
wr |)

|XUrd
wr |(Urd+Vmax+σz+∆z

2|Zswr |+|Zcwr |

|X
Urd
wr

|
)
. (B.7)

The parameter µ is chosen as

µ ,
2α− 1

|XUrd
wr |
∆2

z
(Urd + Vmax + σz) +

2|Zswr |+|Zcwr |
∆z

. (B.8)

If QQQ1 and QQQ2 are positive definite, then V̇ is negative
definite and the system (31) is uniformly stable. QQQ1 is
positive definite if

∆z >
|XUrd

wr
|

|Y Urd
wr |

, (B.9)

µ <
4η∆2

z

(
∆z|Y Urd

wr
| − |XUrd

wr
|
)

σz|XUrd
wr |2

. (B.10)

(B.9) is met as long as (16) holds. It can be shown that
η ≥ 1/5 is a sufficient condition for µ to satisfy (B.10).
Thus, without loss of generality, η is set to 1/5, and
positive definiteness of QQQ1 is ensured.

QQQ2 is positive definite if β > 0 and α > 1. Assumption 10
and (18) ensure that β > 0, while conditions (16) and (18)
ensure that α > 1. Note that the presence of the buoyancy
term Zcwr in QQQ2 influences the requirements on Urd in
Assumption 10, ∆z in (16), and σz in (18).

With positive definite QQQ1 and QQQ2 it follows that V̇ < 0.
Since V > 0, (Khalil, 2002, Theorem 4.8) shows that the
equilibrium eeez = 0= 0= 0 is uniformly stable.

The Lyapunov function candidate V from (B.1) is split
into

V = V1(eeez13) + V2(eeez23), (B.11)

where

V1 , 1
2eee
T
z13PPP 1eeez13, (B.12)

V2 , 1
2eee
T
z23PPP 2eeez23, (B.13)

the matrix PPP 1 = diag
{
σz,

1
2µ
}

> 0 and PPP 2 =

diag
{

1, 1
2µ
}
> 0. Hence, using (B.3) and (B.5),

V̇1 ≤
−2

kz(ez2)

q1,min

p1,max
V1, (B.14)

V̇2 ≤
−2∆z

kz(ez2)

q2,min

p2,max
V2. (B.15)

where qi,min = λmin(QQQi), pi,max = λmax(PPP i), i ∈ {1, 2}.
The function 1/kz(ez2) can be bounded by bounding σzz

eq
int

using (21a):

σzz
eq
int =

ξ

∆z
<
ξsup

∆z
:= κ, (B.16)

where ξsup is the upper bound of ξ from Section 4.1. For
each r > 0 and |ez2| ≤ r, the function 1/kz(ez2) is then
lower bounded by

1

kz(ez2)
≥ 1

(r + κ)2 + ∆2
z

:= c(r). (B.17)

Inserting c(r) into (B.14) and (B.15) gives

V̇1 ≤ −2c(r)
q1,min

p1max
V1, ∀||eeez(t)|| ≤ r, (B.18)

V̇2 ≤ −2∆c(r)
q2,min

p2max
V2, ∀||eeez(t)|| ≤ r. (B.19)

The inequalities in (B.18) and (B.19) are valid for all
trajectories generated by the initial conditions ezezez(t0) since
the system is uniformly stable. The comparison lemma can
be invoked by noticing that the linear system ż = −c(r)z
has the solution z(t) = e−c(r)(t−t0)z(t0). This implies that
for v1(t) = V1(t, eeez(t)) and v2(t) = V2(t, eeez(t)),

v1(t) ≤ e−2(q1,min/p1,max)c(r)(t−t0)v1(t0), (B.20)

v2(t) ≤ e−2(q2,min/p2,max)∆zc(r)(t−t0)v2(t0). (B.21)

Consequently, for v(t) = V (t, eeez(t)),

v(t) ≤ e−2ϑc(r)(t−t0)v(t0) (B.22)

where ϑ = min([q1,min/p1,max],[∆zq2,min/p2,max]). Therefore,

with pmax , max(σ2, 1, µ) and pmin , min(σ2, 1, µ),

||eeez(t)|| ≤
√

pmax

pmin
e−ϑc(r)(t−t0)||eeez(t0)|| (B.23)

Hence, the equilibrium point eeez = 000 is USGES as defined
in (Loria and Panteley, 2004, Definition 2.7).


