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Abstract. Synchronization, i.e., convergence towards a dynamical state where the whole
population is in one age class, is a characteristic feature of some population models with
semelparity. We prove some rigorous results on this, for a simple class of nonlinear one- pop-
ulation models with age structure and semelparity: (i) the survival probabilities are assumed
constant, and (ii) only the last age class is reproducing (semelparity), with fecundity decreas-
ing with total population. For this model we prove: (a) The synchronized, or Single Year
Class (SYC), dynamical state is always attracting. (b) The coexistence equilibrium is often
unstable; we state and prove simple results on this. (c) We describe dynamical states with
some, but not all, age classes populated, which we call Multiple Year Class (MYC) patterns,
and we prove results extending (a) and (b) into these patterns.

1. Introduction

A species is called semelparous when it reproduces only once in its life. The objec-
tive of this paper is to report some rigorous mathematical results on a class of dis-
crete-time nonlinear population models with age structure, having this property. The
motivation came from studies of the effect of reproductive delay, which generally
tends to imply instability and nonstationary behaviour (Levin and Goodyear 1980,
Levin 1981, Bergh and Getz 1988, Silva and Hallam 1993, Wikan and Mjølhus
1996, Wikan 1997 Neubert and Caswell 2000). In some of this work, a rather
peculiar phenomenon occurred: (i) the coexistence equilibrium, i.e., the equilib-
rium with all year classes in balance, tended to be unstable, and (ii) as t → ∞, a
cyclic state was attained where the whole population was in one single age class
at each time step (Wikan and Mjølhus 1996). Related theoretical results had, how-
ever, been described much earlier by Bulmer (1977). In this paper, we shall term
this behaviour SingleYear Class (SYC) dynamics (Davydova et al. 2003), (Solberg
1998). Obviously, semelparity is necessary for this kind of behaviour.

E. Mjølhus: University of Tromsø, Faculty of Science, Department of Mathematics and Sta-
tistics, N-9037 Tromsø, Norway. e-mail: einarm@math.uit.no

A. Wikan: Harstad College, Havnegata 5, postcodeN-9480 Harstad, Norway
e-mail: Arild.Wikan@hih.no

T. Solberg: Norwegian Institute of Defense, Postboks 25, N-2027 Kjeller, Norway
e-mail: Tale.Solberg@ffi.no

Key words or phrases: Age-structured population models – Nonlinear dynamics – Nonlinear
Leslie matrix models – Synchronization – Single year class dynamics



2 E. Mjølhus et al.

However, SYC behaviour as described above, had been described empirically
long time before. In particular, there are several insect species which show SYC
behaviour; for a brief literature survey we refer to Bulmer (1977). In those contexts
the phenomenon is called synchronization.

Bulmer (1977) studied various classes of dynamical models in order to explain
these phenomena of synchronization. Bulmer’s class of models termed “competi-
tion” is related to the class of models to be studied here, although basically, Bul-
mer’s approach was far wider. Hoppensteadt and Keller (1976) presented a model
for the synchronization of the 17-year-cicada (magicicada) which includes both
predation and intraspecific competition. A further study of models related to that
of Hoppensteadt and Keller has recently been presented by Behncke (2000), while
Davydova et al. (2003) discuss the occurrence of convergence towards SYC in bien-
nials within a formulation related to that of Bulmer (1977). Currently, Davydova
et al. (2003, subm). are presenting a broad approach to the dynamics of semelparous
populations.

The present paper will be devoted to establishing some rigorous mathematical
results, for a class of models which is a slight generalization of that considered in
Wikan and Mjølhus (1996). Two main results of this paper state that, for the class of
models considered, (i) the SYC dynamics is locally attracting, meaning that a small
population inserted into an empty year class, will die out (Theorem 1); (ii) the full
coexistence equilibrium is “very often” unstable: we prove Theorem 4 saying that
a) for an even number of year classes, the full coexistence equilibrium is always
unstable, while b) with an odd number of year classes, it is unstable at least just
beyond the value of the parameter R (see Sect. 2) at which the equilibrium comes
into existence.

However, in addition, we have paid much attention to a range of intermediate
dynamical states allowed by the semelparous population model, in which some, but
not all age classes are populated. We call this Multiple Year Class (MYC) dynam-
ics. We prove results for these intermediate states which extend those indicated
above: (i) Theorem 1 is valid for any sustained dynamical state with empty year
classes; (ii) Theorem 2 settles that a unique MYC stationary state exists for any
MYC pattern; (iii) Theorem 3 extends the main results of Theorem 4 to all MYC
stationary states with more than one populated age class.

The plan of the paper is as follows: In Sect. 2, the simple class of models
to be considered in this paper, is formulated. In Sect. 3, the “ kinematics” of
MYC states is described, and what we have called the generation map is derived
from the model of Sect. 2. Sect. 4 contains some brief remarks on SYC dynam-
ics, while in Sect. 5, Theorem 1 is stated and proved. In Sect. 6 the existence
of stationary MYC states is proved (Theorem 2). Sect. 7 discusses the “internal”
stability of the stationary MYC states, based on the linearization of the genera-
tion map of Sect. 3, leading to Theorem 3. Sect. 8 discusses the stability theory
of the full coexistence equilibrium. The main part of Theorem 4 is merely a spe-
cial case of Theorem 3, already proved in Sec. 7. In Sect. 8, we also demonstrate,
by example of the case of 3 age classes, that SYC and full coexistence dynam-
ics can coexist in cases of 3 age classes. Finally, Sect. 9 contains a summarizing
discussion.
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2. The model

The class of models to be discussed in this paper, can be formulated as follows: Let
the vector xt = (x0,t , ..., xn,t )

T represent the population with xj,t representing the
population in age class j at time t . Then the dynamics

xt+1 = A(Xt)xt (1)

is assumed, where the Leslie matrix is assumed to have the form

A(X) =




0 · · · F0f (X)

p0 0
0 p1
...

0 pn−1 0




(2)

i.e., with only the last age class productive, and where the fecundity of that age
class depends on the total population

X = x0 + · · · + xn (3)

We shall refer to X as the population pressure.We moreover assume that the survival
probabilities pj are constant, with

0 < pj ≤ 1 , j = 0, ..., n − 2

0 < pn−1 < 1
(4)

The function f , defined on [0, ∞), is assumed to satisfy

f (0) = 1 (5a)

f (X) > 0 (5b)

f ′(X) < 0 and f ′ continuous (5c)

Xf (X) bounded (5d)

Eq. (5d) ensures that the dynamics remains in a bounded region of x space, and the
form (1),(2) ensures that the components of x remain non-negative. Eq. (5a) should
be regarded as a normalization defining the parameter F0, while (5a)– (5d) ensure
that the equation

Rf (X̂) = 1 (6)

has a unique solution X̂ for any R > 1; in particular, (5d) implies that f (X) → 0
as X → ∞, while (5c) ensures that it does so monotonically. Eq. (6) arises as
a necessary (and also sufficient) condition on the total population X̂ in all cases
of equilibrium (in the full coexistence case) or stationary life cycle states (SYC,
MYC), where the parameter R, defined as

R = F0 p0 · · · pn−1 (7)



4 E. Mjølhus et al.

is the net reproductive rate (Caswell 2001) in the limit of small population. This
can be readily seen from (1), by assuming xj,t+(n+1) = xj,t for all age classes
j = 0, ..., n.

When R < 1, the population dies out. The value R = 1 is therefore a basic
bifurcation value, at which the complicated system of stationary states (coexis-
tence, MYC, SYC) simultaneously come into existence. This bifurcation is highly
structurally unstable; for example, at R = 1 all eigenvalues of the linearized system
obtained by linearizing around the coexistence equilibrium, lie on the unit circle
(cf. Sect. 8). On the other hand, there appears no reason to expect any structural
instability for any of the unusual behaviour found for this model for R > 1.

The condition (4) on the survival probabilities reflects that the state variables
xj are thought of as number densities. The strict inequality for pn−1 is then crucial
for all the proofs of our theorems; it enters explicitly in the proof of Lemma 1 of
Sect. 5, and it enters the proofs of Theorems 2 and 3 through the strict inequalities
occurring in (37).

It is emphasized that the main motivation for the present report is to prove some
general results related to findings reported by Wikan and Mjølhus (1996), while
biological motivations for the choice of model have been subordinate. However,
age-structured models with density dependence in the fecundities, have been fre-
quently studied (e.g., Levin and Goodyear 1980, Levin 1981, Bergh and Getz 1988,
Silva and Hallam 1993), in particular in contexts of fish populations (Levin and
Goodyear 1980, Tuljapurkar et al. 1994). A rationale for this kind of modelling,
is to think of x0,t+1 as the density of, e.g., larvae, or fry, establishing themselves
from eggs laid by the last generation xn,t , assuming that this establishment goes on
during a period that is short compared to the primary time step, the latter usually
being one year. Then, the simple representation of the population pressure as given
by (3), and the influence on the fecundity through the function f , is thought of as a
simple representation of the inhibiting influence on this initial establishment from
the total population.

It should be admitted that (3) is a rather schematic expression for the popu-
lation pressure. For example, for the magicicada (Hoppensteadt and Keller 1976,
Behncke 2000), it is not reasonable that the parent generation xn,t contribute to the
population pressure in the phase of larvae establishment. Also, in many cases it
will be reasonable to assume that the newborn generation x0,t+1 does contribute.

A more flexible representation of the population pressure is as a weighted sum

C = α0x0 + · · · + αnxn

introducing additional parameters αj ≥ 0, j = 0, ..., n. It is mentioned that such
cases can be incorporated into the present formulation, provided

pj

αj+1

αj

≤ 1

pn−1
αn

αn−1
< 1

as can easily be demonstrated by rescaling the age class populations xj .
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Fig. 1. Example of convergence towards SYC in a case with 3 age classes. Parameters:
p0 = p1 = 0.6, F0 = 4.0. Initial values: x0 = 0.2, x1 = 0.1, x2 = 0.08 were chosen near
the coexistence equilibrium. 3 × 60 iterations. f (X) = exp(−X). The points number 3k are
indicated by asterisk, number 3k + 1 by diamond, and number 3k + 2 by square

Examples of functions f satisfying (5), which are wellknown from the literature
on population dynamics, are the Ricker family

f (X) = exp(−αX) (8)

(Ricker 1954), and the Hassell family

f (X) = (1 + αX)−σ (9)

where σ ≥ 1 is required in order to satisfy (5d). In (8) and (9), the parameter α is
unessential, since it can be scaled into the population vector x.

We have a lot of numerical experience that SYC behaviour generally results
from model (1)–(5); one example is shown in Fig. 1. In Wikan and Mjølhus (1996),
a few particular analytical results were noted. Theorems 1–4 in the forthcoming sec-
tions contain what we are able to say about this model, related to synchronization.
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3. Kinematics of MYC, and the generation map

The semelparous model (1)–(5) allows that some age classes may be empty. If
all but one age class is empty, we call the dynamical state SYC dynamics. One
may, however, also have that more than one, but not necessarily all, age classes are
populated. We shall then use the term Multiple Year Class (MYC) dynamics.

In order to describe the “kinematics” of this, we start with an initial instant of
time t0, at which the q +1 age classes n = n0 > n1 > · · · > nq ≥ 0 are populated.
This we collect into the initial age class distribution vector

n(t0) = n(0) = (n0, n1, ..., nq) = (n
(0)
0 , n

(0)
1 , ..., n(0)

q ) . (10)

This initial age class distribution generates a q + 1 MYC pattern: a subsequent
sequence of n + 1 age class distributions connected by

n(t + τ) = (n(t) + τ) mod (n + 1) (11)

for any integers t and τ . Each of these age class distributions we shall refer to as a
phase of the given MYC pattern. Note that only for the initial age class distribution
do we require ordering of the ages.

Special cases are q = 0: SYC, and q = n: Full coexistence. Cases with 0 <

q < n we term proper MYC states.
For the dynamics according to our specific model (1)–(5), the reproducing

phases, in which the maximal component of n is equal to n, play a decisive role.
In defining the initial age class distribution, we added the requirement that it repre-
sents a reproducing phase, so that n0 = n. The remaining reproducing phases will
then occur at time instants

ti = ti−1 + τi

τi = ni−1 − ni , i = 1, ..., q
(12)

At these times of reproduction, the age class distributions are generated by

n(i) = (n(i−1) + τi) mod (n + 1) (13)

for i = 1, ..., q. We denote the components

n(i) = (n
(i)
0 , ..., n(i)

q ), i = 0, ..., q (14)

The population having the age corresponding to each fixed position j in the
age class vector, belongs to one and the same broodline. Within its life span this is
equivalent to “year class”; however, according to model (1)–(5), a broodline is con-
tinued by reproduction each time it reaches the maximal age n. For the discussion
of MYC dynamics, it has been found convenient to relate the state variables to the
broodlines rather than the age classes; furthermore, we shall replace time with an
integer parameter s representing generation: at the initial instant t0, the broodlines
0, 1, ..., q have ages n0 = n, n1, ..., nq , and we adopt that they at this time are all in
generation s. At time t0 +1, broodline 0 has reproduced to enter generation s +1 as
newborns, while the remaining broodlines are still in generation s. At time ti + 1,
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i = 0, ..., q, broodline i has entered generation s+1 as newborns, broodlines j < i

are already in generation s + 1, while broodlines j > i are in generation s.
As state variables we shall use the population of newborns in each broodline

j entering generation s, which we shall denote wj,s . In vectorial form, we write
ws = (w0,s , .., wq,s). Introducing the survival parameters

�j = p0 · · · pj−1

�0 = 1
(15)

the population of the broodlines at each reproducing phase at time ti are

�
n

(i)
j

wj,s+1 j < i

�
n

(i)
j

wj,s j ≥ i

where the integers n
(i)
j are generated from n(0) by (12), (13), (14). The population

pressures at these reproducing phases are accordingly

Xi,s = �
n

(i)
0

w0,s+1 + · · · + �
n

(i)
i−1

wi−1,s+1 + �
n

(i)
i

wi,s + · · · + �
n

(i)
q

wq,s (16)

where we have that n
(i)
i = n. Then, the model (1)–(5) leads to the iterated map

wi,s+1 = R wi,sf (Xi,s) (17)

We shall refer to (17) as the generation map. One can do explicit forward calcula-
tions according to (17) by starting with calculating w0,s+1, ..., wi−1,s+1, and use
them when calculating wi,s+1, for i = 1, ..., q.

4. SYC dynamics

For the SYC case q = 0, we get the one-dimensional map

Xs+1 = RXsf (Xs) (18)

from the generation map (17), where we have X = �nw0. For R > 1, the map (18)
has a unique fixed point X̂, where X̂ satisfies (6). This fixed point is stable for

ε < 2 (19)

where ε > 0 is defined as

ε(X̂) = −RX̂f ′(X̂) (20)

Since f ′ is assumed continuous, ε depends continuously on R for R > 1, and ε → 0
when R → 1+. Depending on the function f , condition (19) may be satisfied for
all values of R, or it may be violated for sufficiently large R. For example, for the
Hassell family (9) with 1 ≤ σ ≤ 2, X̂ is a globally attracting fixed point for (18).
In other cases, condition (19) may be violated, and a sequence of period-doubling
bifurcations of Feigenbaum type may occur as well as various types of complicated
dynamic behaviour (Devaney 1989, Thunberg 2001). For example, this takes place
for the Ricker case (8), as well as for the Hassell family (9) provided σ is sufficiently
large. For a recent, well updated account of this complexity, we refer to Thunberg
(2001).
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5. Decay of small inserted broodlines

This section is concerned with the “transverse” stability of a SYC dynamical state,
i.e., perturbing it by inserting small populations into the empty broodlines. The par-
tial results of Wikan and Mjølhus (1996) indicate that SYC dynamics is attracting
in the sense that when R > 1, all but one broodline dies out as t → ∞. Theorem 1
below expresses this in a local sense: that a small population inserted into an empty
broodline will die out. However, a similar result also applies for all cases of proper
MYC dynamics. Therefore, we formulate and prove Theorem 1 such that it is valid
for all these cases.

For the case of a proper MYC state, it may (and in most cases does) happen
that one or more of the broodlines tend to zero as s → ∞, thus diminishing the
number of populated broodlines, but it is also possible that the dynamics sustains
in the original MYC pattern.

In the latter case, in order to formulate precise conditions, let w = (w0, ..., wq) ∈
R

q+1
+ represent the components of the MYC state and η ∈ R

n−q
+ the components of

inserted population in empty broodlines; then the generation map defined by (17)
has the form (ws+1,ηs+1) = F(ws ,ηs) = (φ(ws ,ηs),ψ(ws ,ηs)), where φ, ψ

are C1-smooth functions, and ψ(w, 0) = 0. Let φ0 : R
q+1
+ → R

q+1
+ be defined

by φ0(w) = φ(w, 0); then φ0 describes the MYC dynamics. We introduce the
following notions:

Definition. A bounded domain D1 ⊂ R
q+1
+ is said to be separated from extinction

if w ∈ D1 implies that all components of w are nonzero (D1 is the closure of D1).
A MYC state is said to be sustained if there is a bounded domain D1 separated from
extinction which is invariant under φ0. It is strongly sustained if it is sustained and
the bounded domain D1 can be chosen such that φ0 maps D1 strictly into itself,
i.e.,

dist (∂D1,φ0(D1)) > 0 (21)

Then we have:

Theorem 1. Assume that a q + 1 MYC state with 0 ≤ q < n is strongly sustained.
Then there are positive K, λ with 0 < λ < 1, and a neighbourhood D2 of η = 0
of the form

D2 = {η ∈ R
n−q
+ | ‖η‖ < δ} (22)

such that

‖ηs‖ ≤ Kλs‖η0‖ (23)

for all initial points (w0,η0) ∈ D1 × D2 and all integers s ≥ 0. (‖ · ‖ is, e.g., the
Euclidean norm.)

In order to prove Theorem 1, we first prove Lemma 1, which expresses the
essential mechanism of the model (1)–(5) to give SYC behaviour:
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Lemma 1. In a MYC state, the population pressure in a non-reproductive phase is
larger than in the next reproductive phase.

Proof. Choose an initial reproductive phase of the MYC state, n = (n0, ...,

nq−1, nq), (i.e., assuming n = n0 > n1 > · · · > nq ≥ 0), occurring at time
t0, and with no loss of generality, assume that n − n1 > 1, so that there is at least
one non-reproductive phase before the next reproductive phase, which occurs at
t0 + n − n1. Consider the population pressure Xm of the non-reproductive phase
occurring at time t0 + τm with 0 < τm < n − n1. We can write

Xm = Ym + βw1

for some β > 0, where Ym contains the contributions from all the broodlines except
broodline 1. The population pressure X1 at time t0 + n − n1, when broodline 1
reproduces, then satisfies

X1 ≤ Ym + βpn−1w1

because broodline 1 has been reduced by at least a fraction pn−1 while the others
have at least not increased, since there has been no reproduction. This implies

Xm ≥ X1 + A

with
A = β(1 − pn−1)w1

A > 0 since pn−1 < 1 according to (4). 	

Remark. For a sustained MYC state, there is an A > 0 such that

A ≤ A

for all w ∈ D1, i.e., A = β(1 − pn−1) min
w∈D1

w1.

The next lemma demonstrates the essence of Theorem 1 in terms of linear
approximation:

Lemma 2. Insert a small population η0 into an empty broodline. Then there are
C > 0, α ∈ (0, 1) such that its population ηs after s generations satisfies

ηs ≤ Cαsη0 (24)

in the linear approximation, for all integers s ≥ 0.

Proof. Choose an initial phase n, and broodlines m and 1 as in the proof of Lemma 1,
and insert a newborn population η0 at time t0 −nm, where nm is the age of broodline
m at time t0. We label it as generation 0. Then, after s generations we have, in the
linear approximation,

ηs = Rs
s−1∏
s′=0

f (Xm,s′)η0 (25)
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where Xm,s′ is the population pressure from the MYC state when the inserted brood-
line of generation s′ reproduces. At the same time, for the next MYC broodline, we
have

w1,s = Rs

(
s−1∏
s′=0

f (X1,s′)

)
w1,0 (26)

Since the MYC dynamics is sustained, this gives

Rs
s−1∏
s′=0

f (X1,s′) ≤ C (27)

(we can, for example, take C = max
w∈D1

w1/ min w1). For w ∈ D1, the population

pressure X remains in a compact subset D0 ⊂ R+. Then, since f is strictly and
continuously decreasing,

α = max
X∈D0

f (X + A)

f (X)
< 1 (28)

Then, we have by (25), (27) and (28):

ηs = Rs
s−1∏
s′=0

f (Xm,s′)

f (X1,s′)
f (X1,s′)η0

≤ αsRs
s−1∏
s′=0

f (X1,s′)η0

≤ Cαsη0

	

For the further work towards a proof of Theorem 1, we introduce the nota-

tion Fs = (φs ,ψs) where Fs is the s times iterate of F . Thus, ws = φs(w0,η0),
ηs = ψs(w0,η0). Furthermore, for differentiation with respect to the second group
of arguments at point w,η, we introduce the notation d(w,η)ψ. Then, since the linear
approximation is diagonal in η, Lemma 2 is rephrased as

‖d(w,0)ψ
s‖ ≤ Cαs , 0 < α < 1, w ∈ D1 (29)

where one can take C and α as the largest of those occurring for each component
of η in Lemma 2.

Proof of Theorem 1. For C ≤ 1 the proof is simple: First, by the mean value the-
orem, there is a neighbourhood D2 of the form (22) such that η1 = ψ(w0,η0)

satisfies

‖η1‖ ≤ λ‖η0‖ (30)
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with α ≤ λ < 1, w0 ∈ D1, η0 ∈ D2. By possibly diminishing D2, due to the con-
dition of strongly sustained MYC dynamics, D2 can be chosen small enough that
φ(D1 × D2) ⊂ D1, and consequently, by (30), we have F(D1 × D2) ⊂ D1 × D2.
Then, (23) with K = 1 follows by iteration, for (w0,η0) ∈ D1 × D2. To handle
C > 1, which allows that ‖η‖ may increase at some steps, we proceed as follows:
Choose an integer m such that m > − log C/ log α; i.e., the integer m > 1 is such
that m = − log C/ log α + r with r > 0. Then, µ = Cαm satisfies µ = αr < 1.
The condition of strongly sustained MYC dynamics implies that we can pick a
neighbourhood D̃2 of the form (22) such thatφm(D1, D̃2) ⊂ D1. Putχ = ψm. By
(29) and the definition of µ, we have, for w ∈ D1:

‖d(w,0)χ‖ ≤ µ

By the mean value theorem, after shrinking D̃2 if necessary, we have

‖χ(w0,η0)‖ ≤ ρ‖η0‖
for some ρ, µ < ρ < 1 for (w0,η0) ∈ (D1 × D̃2). This in turn implies that
Fm(D1 × D̃2) ⊂ (D1 × D̃2). By iteration, we then get

‖χk(w,η)‖ ≤ ρk‖η0‖ (31)

Next, pick a neighbourhood D2 ⊂ D̃2 of the form (22) such thatψ�(D1, D2) ⊂ D̃2
and φ�(D1, D2) ⊂ D1 for all integers � satisfying 0 ≤ � < m, w ∈ D1, η ∈ D2.
We can write a uniform Lipschitz condition

‖ψ�(w0,η0)‖ ≤ K0‖η0‖
for all w0 ∈ D1, η0 ∈ D2 and all integers �, 0 ≤ � < m. By the decomposition
s = � + km, with � a nonnegative integer less than m, one has

‖ηs‖ ≤ K0ρ
k‖η0‖

which, by λ = m
√

ρ, K0 = λ�K , translates to (23). 	

Remark 1. For the SYC case q = 0, the condition of strongly sustained state is
satisfied once R > 1, because then the origin is repelling and Xf (X) bounded.

Remark 2. Lemma 2 overlaps with results noticed already by Bulmer (1977):
Lemma 2 specialized to the case of SYC equilibrium is a special case of eq. (8) of
Bulmer (1977).

6. Stationary MYC states

A stationary q + 1 MYC state is one for which wj,s = wj,s+1
def= wj , j = 0, ..., q,

all s. By (17), one has eq. (6) with Xi �→ X̂, where Xi is given by (16) with
wj,s = wj , j = 0, ..., q. Since (6) has a unique solution, it follows that Xi = X̂,
i = 0, ..., q. We choose to normalize according to

wi = ŵiX̂ (32)
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Then, ŵ = (ŵ0, ..., ŵq) satisfies

L ŵ = b (33)

where the matrix L and the vector b are given by

L =




�
n

(0)
0

�
n

(0)
1

· · · �
n

(0)
q

�
n

(1)
0

�
n

(1)
1

�
n

(2)
1

· · · �
n

(1)
q

...

�
n

(q)
0

�
n

(q)
1

· · · �
n

(q)
q




b =




1
...
...

1




(34)

Here, the integers n
(j)
i are generated from n(0) by (12), (13). We shall refer to the

matrix L as the MYC matrix for the given MYC pattern and the chosen initial age
class distribution. It can also be expressed as

L =




�n �n1 �n2 · · · �nq

�n−n1−1 �n �n2+(n−n1) · · · �nq+(n−n1)

�n−n2−1 �n1−n2−1 �n · · · �nq+(n−n2)

· · ·
�n−nq−1 �n1−nq−1 · · · �n




(35)

In order to be a meaningful stationary q + 1 MYC state, the solution must satisfy

ŵj > 0 , j = 0, ..., q (36)

Since �m is non-increasing with integer m, and �n < �m for any m < n, by (4),
there is an ordering structure in the MYC matrix L in a circulating, or “toroidal”,
sense:

�
n

(i)
j

≥ �
n

(i+1)c
j

, i = (j + 1)c, (j + 2)c, ..., (j + q − 1)c

�
n

((j−1)c)
j

> �
n

(j)
j

(37)

and

�
n

(i)
j

≤ �
n

(i)
(j+1)c

, j = (i + 1)c , (i + 2)c, ..., (i + q − 1)c

�
n

(i)
i

< �
n

(i)
(i+1)c

(38)

Here and later in this section, (i + �)c means cyclic addition:

(i + �)c
def= (i + �) mod (q + 1)

We also remind that the diagonal elements �
n

(i)
i

= �n, i = 0, ..., q, and that the

strict inequalities occurring in (37) , (38), are consequences of the strict inequality
regarding pn−1 in (4).

Theorem 2. For any q + 1 MYC pattern, a unique stationary MYC state exists.
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Proof. We have to prove that the linear system (33), (34) has a unique solution
satisfying (36). The basic property implying this, is inequalities (37). We first intro-
duce some notation: Let K ⊂ R

q+1 denote the set K = {(ŵ0, ..., ŵq) | ŵj ≥
0, j = 0, ..., q}, let

πj (ŵ) = �
n

(j)
0

ŵ0 + · · · + �
n

(j)
q

ŵq

introduce the coordinate planes Pj ⊂ K:

Pj = {ŵ ∈ K | ŵj = 0} , j = 0, ..., q

and finally introduce the hyperplane segments 
j ⊂ K as


j = {ŵ ∈ K | πj (ŵ) = 1}
Each 
j is a bounded set because the coefficients �

n
(j)
i

are all positive. Using the

introduced notation (33) can also be expressed as

πj (ŵ) = 1 , j = 0, ..., q (39)

The proof proceeds by induction on q: It is true for q = 0; we assume that it is true
for all q ′ + 1 MYC patterns with q ′ = 0, 1, ..., q − 1. We shall prove that it is valid
for q ′ = q.

Our induction hypothesis implies that the q MYC pattern obtained from the
given q + 1 pattern by making broodline 0 empty, has a unique MYC stationary
state, i.e.,

πj (ŵ) = 1 on P0 , j = 1, ..., q (40)

has unique solution w̃1, ..., w̃q , w̃j > 0, j = 1, ..., q. By the implicit function
theorem, there is a straight line segment � defined by π1(ŵ) = 1, ..., πq(ŵ) = 1,
ŵ ∈ K , starting at Q0 = (0, w̃1, ..., w̃q) and ending at a point Q1 ∈ Pν for some
ν 
= 0; the latter follows since all 
j are bounded sets, implying that � is bounded.

Lemma. a) πi(ŵ) − π(i+1)c (ŵ) > 0 on Pi if wi+1 > 0. b) If all inequalities of
(37) are strict, then πi(ŵ) − π(i+1)c (ŵ) > 0 on Pi for all ŵ 
= 0, ŵ ∈ K .

Proof. The lemma follows easily by subtracting, putting ŵi = 0 and using inequal-
ities (37). 	

Proof of Theorem 2 continued. It follows from a) of the Lemma that π0(Q0) > 1,
since π1(Q0) = 1, w̃1 > 0, and π0(ŵ) − π1(ŵ) > 0 on P0. We first com-
plete the proof for the case that all inequalities (37) are strict. Then it follows
from b) of the Lemma that Q1 ∈ Pq , because πj (Q1) = 1, j = 1, ..., q, while
πν(Q1)−π(ν+1)c (Q1) > 0, which is impossible unlessν = q. Now, sinceπq(Q1)−
π0(Q1) > 0 and πq(Q1) = 1, it follows that π0(Q1) < 1. Therefore, π0(ŵ)

changes from > 1 to < 1 when proceeding along � from Q0 to Q1. Consequently,
there is an interior point Q on � at which π0(Q) = 1.At this point all equations (39)



14 E. Mjølhus et al.

as well as (36) are satisfied, and the proof is completed for the case of strict inequal-
ities. For limiting cases where equality is permitted in (37), we embed the system
(33) in a one-parameter family L(ε) depending continuously on ε for 0 ≤ ε ≤ ε0,
where L(0) is the given system, while the strict inequalities are satisfied for ε > 0.
This can be achieved by, e.g., putting pj,ε = (1 − ε)pj . Taking the limit as ε → 0,
the point Q1 remains in Pq , since Pq is a closed set. Moreover, w0(Q1) > 0. It
follows that π0(Q1) < 1 by a) of the Lemma. Then Theorem 2 follows also in the
limiting cases. 	


We proceed to give explicit solutions to (33) in some special cases:
(i) Full coexistence case, q = n. In this case, the MYC matrix is a circulant

matrix (Meyer 2000, Muir 1960):

L =




�n �n−1 · · · �0
�0 �n · · · �1
· · ·

�n−1 �n−2 · · · �0 �n




In this case it is easily verified that the solution to (33) is ŵ0 = · · · = ŵn = 1/K ,
where

K =
n∑

j=0

�j (41)

The stationary age distribution becomes

x̂j = �j

K
X̂ , j = 0, ..., n (42)

In this case, x̂ = (̂x0, ..., x̂n) is an equilibrium state for the original map (1)–(5).

(ii) Symmetric proper MYC. We define a symmetric MYC pattern as follows: As-
sume that q +1 divides n+1, and define d > 1 as their quotient: n+1 = d(q +1).
Then an MYC initial reproducing age class distribution n = (n0, n1, ..., nq) is
defined by n0 = n, ..., nj = nj−1 − d, ..., nq = d − 1. In fact, this is the only
initial reproducing age class distribution in this case. By defining �̃q−j = �nj

,
j = 0, ..., q, this case becomes similar to the full coexistence case: By defining
Pj = ∏(j+1)d−1

ν=jd pν , we have �̃j = ∏j
i=0 Pi , j = 0, ..., q. The stationary solution

becomes ŵ0 = · · · = ŵq = 1/K̃ with K̃ = ∑q
j=0 �̃j . The populations of the

populated age classes in the reproducing phases become

x̂(j+1)d−1 = �(j+1)d−1

K̃
X̂ , j = 0, ..., q

(iii) The homogeneous case. By this we mean that pj = p, j = 0, ..., n− 1, where
0 < p < 1, which gives �m = pm for all integers m, 0 ≤ m ≤ n. For this case, we
have the stationary q + 1 MYC solution
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ŵ0 =
(
p−(n−n1−1) − p

)
/D , ŵ1 =

(
p−(n1−n2−1) − p

)
/D ,

· · · , ŵq = (
p−nq − p

)
/D

D = 1 − pn+1

(43)

which can be verified a posteriori.

7. Stability of the stationary MYC states

While Sect. 5 was concerned with the “transverse” stability of a given sustained
MYC pattern, this section treats its internal stability, i.e., the effect of perturbations
within the given MYC pattern. In the previous section, we proved that a unique
MYC stationary state exists for any MYC pattern. In this section it is proved that
these stationary states are often unstable when q + 1 > 1. This includes the case of
full coexistence, for which many partial results were reported in Wikan and Mjølhus
(1996). A numerical example with q + 1 = 3 is shown in Fig. 1. We shall prove
the following general result:

Theorem 3. a) Any stationary MYC state with q + 1 even, is internally unstable.
b) When q + 1 is odd and q > 0, it is internally unstable for sufficiently small ε.

We remind that ε is defined in (20), and that small ε occur when R → 1 from
above, because X̂ bifurcates from 0 at R = 1. In order to prove theorem 3, we
linearize the generation map (17) around the stationary MYC state defined by (32),
(33):

ws = X̂ŵ + ηs

and seek a solution on the form

ηs = η̂λs

which leads to

[
(λ − 1)I + εW(λL− + L+)

]
η̂ = 0 (44)

where I is the (q + 1) × (q + 1) unit matrix, W is the diagonal matrix W =
diag(ŵ0, ..., ŵq), L− (L+) has the elements of L below the diagonal (above and on
the diagonal) and 0 elsewhere. Accordingly, the characteristic equation becomes

P(λ)
def= det

[
(λ − 1)I + εW(λL− + L+)

] = 0 (45)

Lemma 1. a) The stationary MYC state is unstable if det L < 0. b) It is unstable
for sufficiently small ε > 0 if

P1(λ1) = det(λ1I + WL) (46)

has a root with Re(λ1) > 0.
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Proof. a) We have P(1) = εq+1 det W det L. The two first factors are positive.
If det L < 0, we have P(1) < 0. As λ → +∞, the product of the diagonal
terms dominates, so P(λ) → +∞ as λ → +∞. Therefore, P has a root λ > 1,
which implies that there is a growing solution to the linearized generation map.
b) Expanding λ = 1 + ελ1 + ..., the leading order requires P1(λ1) = 0. Since
|λ| = 1 + εRe(λ1) + O(ε2), it follows that if P1 has a root with positive real part,
then P has a root with |λ| > 1 for sufficiently small ε, which implies a growing
solution to the linearized generation map. 	

Lemma 2. det L < 0 for q + 1 even.

Proof. It follows from Theorem 2 that det L 
= 0. The given MYC matrix can be
obtained by a deformation from the one obtained by pj �→ εpj , j = 0, 1, ..., n−1,
with 0 < ε ≤ 1. It remains a MYC matrix for all values of ε in this range, and so
det L(ε) does not change sign. For ε sufficiently small, det L is dominated by the
largest element in each column of L, which is the one below the diagonal (cyclic).
This product has negative sign. 	

Lemma 3. P1 has the root λ1 = −1.

Proof. Eq. (33) can be written as

LWb = b

which implies that LW has 1 as an eigenvalue and b as the corresponding eigen-
vector. Multiplying with W from the left, it follows that 1 is an eigenvalue of WL
(with Wb as eigenvector). It follows that −1 is a root of P1. 	

Proof of theorem 3. Theorem 3 a) follows immediately from a) of Lemma 1 and
Lemma 2. To prove b), we notice that the trace of WL is

tr WL = �n(ŵ0 + · · · + ŵq)

We have tr WL < 1 since

�n(ŵ0 + · · · + ŵq) <

q∑
j=0

�nj
ŵj = 1

since �n < �nj
for j = 1, ..., q, and the last equality is the first component of

(33). Denoting the eigenvalues of WL by −λ
(0)
1 , ..., −λ

(q)
1 , i.e., λ

(0)
1 , ..., λ

(q)
1 are

the roots of P1, and put λ
(0)
1 = −1 by Lemma 2, one therefore has

q∑
j=1

λ
(j)
1 > 0

This implies that P1 must have a root with positive real part. Then b) of Theorem 3
follows by lemma 1b. 	
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8. Further results on the full coexistence case

In this section, we discuss some further results for the case of full coexistence. The
full coexistence equilibrium was obtained in Sect. 6, giving the formulas (42), (41).
Linearizing the original map (1)–(5) around this equilibrium and seeking a solution
varying as µt , gives the characteristic equation

µn+1 + ε

K
qn(µ) − 1 = 0 (47a)

qn(µ) =
n∑

j=0

�jµ
n−j (47b)

Theorem 4. a) For an even number of age classes, the full coexistence equilibrium
(34) is always unstable;

b) for an odd number of age classes, it is unstable for ε sufficiently small;
c) for an odd number of age classes, it is also unstable for sufficiently large ε.

Proof. a) and b) are special cases of Theorem 3. The feature c) has only been
proved for the present case (and the symmetric MYC, see below). c) follows by a
simple application of the intermediate value theorem, and it follows from the fact
that qn(−1) > 0 when n + 1 is odd. When n + 1 is odd, since qn(−1) > 0, the
lefthand side of (47a) will be positive at µ = −1 when

ε > 2K/qn(−1) (48)

Since µn+1 dominates, and → −∞ as µ → −∞, it follows that a root µ̃ of (47a)
with µ̃ < −1 exists when (48) is satisfied. 	

Remark 1. It depends on the actual form of the function f whether (48) can actually
be achieved. Using (6) to eliminate R, we get

ε = − X̂f ′(X̂)

f (X̂)

For example, for the Hassell family (9) we have

ε = σ
X̂

1 + X̂

and so, ε < σ . For the Ricker family (8), we have

ε = ln R

so that all values can be achieved, though possibly at extreme values of R.

Remark 2. Theorem 4c is also valid for the symmetric stationary MYC state, with
“number of age classes” n+1 replaced by “number of populated age classes” q+1.

Remark 3. It is easy to prove Theorem 4a directly from (47): When n+1 is even, it
is readily seen that qn(−1) < 0. Consequently, the lefthand side of (47a) is negative
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at µ = −1. As µ → −∞, the lefthand side of (47a) goes to +∞. Therefore, (47a)
has a root µ < −1 when n+1 is even (Solberg 1998). We also know proofs of The-
orem 4b based on (47), but they are not simpler than the one given for Theorem 3.
The homogeneous case, as well as some low-dimensional cases, were obtained in
Wikan and Mjølhus (1996).

We now proceed to demonstrate, by example, that in the case of an odd num-
ber of age classes, sustained non-stationary full coexistence dynamics can actually
coexist with SYC, which is attracting by theorem 1. For the case of 3 age clas-
ses, the Jury criteria (Murray 1993) applied to (47) gives that the full coexistence
equilibrium is stable whenever

εH < ε < εF (49)

where

εH = K
1 − 2p0p1 + p0

p0p1(1 − p0p1)
(50a)

εF = K
2

1 − p0 + p0p1
(50b)

Since,

εF − εH = K
(1 − p0)[(3p1 − 1)p0 − 1]

p0p1(1 − p0 + p0p1)(1 − p0p1)
(51)

and in view of (4), in order to have εF > εH , one must have

1 > p1 > (1 + p0)/(3p0)

1 > p0 >
1

2

(52)

When ε passes εH from above, two complex conjugate roots of (47) leave the unit
disk, so that one has a Hopf bifurcation. Our numerical experience indicates that
for 0 < ε < εH , the SYC dynamics is globally attracting (except possibly for
a set of zero measure, e.g., the stable manifold of the coexistence equilibrium).
For εH < ε < εF , the stable full coexistence equilibrium coexists with the SYC
dynamics, and our numerical experience indicates that the Hopf bifurcation at εH is
subcritical. When ε passes through εF from below, one root of (47) leaves the unit
disk through −1, so that there is a flip bifurcation, which in the numerical examples
we have considered, appeared supercritical (we have observed 16 crossings of εF ,
all using the Ricker law for f ). Then for ε just above εF , a two- periodic coexistence
attractor coexists with the (in this regime highly nonstationary) SYC dynamics. As
ε was further increased, the next bifurcation was in all cases a supercritical Hopf
bifurcation, so that each of the two points of the unstable 2-orbit was surrounded
by a closed curve invariant under the 2-iterated map. These two closed curves then
formed a local attractor, where the dynamics consisted in alternating between them.

Increasing ε further, various bifurcations occurred, showing various kinds of
attractors, including chaotic-looking ones. However, in all cases, when following
the attractor numerically by increasing ε in small steps and using the end state
of the previous run as the initial state of the next, the attractor was eventually lost
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Fig. 2. Parameter window for coexistence dynamics in case of 3 age classes, f (X) =
exp(−X). Between the Hopf curve and the flip curve, a locally stable coexistence equilibrium
exists.Above the flip curve, a locally stable 2-period emerged. The + signs indicate thresholds
for a supercritical Hopf bifurcation. The diamonds mark where the attractor was lost

and the dynamics went to SYC. In Fig. 2, we show an example of a parameter plane
for these bifurcations.

We remind of Remark 1 after Theorem 4, implying that it depends on the func-
tion f whether the values of ε where these bifurcations take place, actually can
occur. It should also be emphasized that for a large range of values of the parame-
ters p0, p1, namely those breaking (the righthand sides of) conditions (52), these
bifurcations do not occur, and SYC appears as the globally attracting alternative.

For the proper MYC states discussed in previous sections, we have not made
any investigations of possible coexistence with SYC. However, at least in the sym-
metric MYC state with q + 1 = 3, one will have the same stable coexistence
stationary state as above. This shows that parameter windows can exist for which
sustained proper MYC dynamics coexists with the SYC dynamics. However, from
our numerical experience, we do not expect such cases to be prominent features of
the model (1)–(5).

9. Concluding remarks

In this paper we have described a rather peculiar kind of dynamical behaviour
in certain age structured discrete time nonlinear population models with extreme
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reproductive delay: semelparity. We have termed this dynamical behaviour Single
Year Class (SYC) dynamics (Solberg 1998, Davydova et al. 2003). In some con-
texts, the phenomenon is also called synchronization. Our main results on SYC
dynamics for this class of models are summarized in Theorems 1 and 4, which say
that the SYC state is always attracting (Theorem 1) and that the full coexistence
equilibrium is often unstable (Theorem 4). In addition, we have included through-
out a discussion of Multiple Year Class dynamics (MYC), which generalizes the
results referred to above: Theorem 1 includes what we have termed strongly sus-
tained MYC states; moreover, it was proven that stationary MYC states always
exist (Theorem 2), but that they are often internally unstable (Theorem 3), in a
pattern similar to the full coexistence case. Finally, we have by example with 3 age
classes demonstrated that stable coexistence equilibrium, or sustained coexistence
nonstationary dynamics, can coexist with SYC dynamics in a case with an odd
number of age classes.

Even if the class of models (1)–(5) is rather extreme, the results described by
Theorems 1 and 4 have a kind of robustness, since the attractors described are of
hyperbolic type (e.g., Katok and Hasselblatt, 1995), at least in the finite periodic
cases. This implies that if the model is slightly changed, attractors situated near those
of our system will occur in the perturbed system. For example, if model (1)–(5) is
perturbed with sufficiently small fecundities in age classes near the reproductive
one, the resulting t → ∞ dynamics would be very small populations in all but one
age class, etc.

The surprising behaviour observed in these models, in particular the basic
feature behind Theorem 1, can be quite easily explained verbally. The crucial
point is that in the population pressure (3) entering the recruitment function f ,
the juveniles have the same weight as the veterans. The equilibrium condition
(6) concerns the SYC population when it is in a reproductive phase. In the other
phases, the population pressure is larger. Therefore, small perturbing populations
inserted into empty age classes will experience a higher population pressure in
their reproductive phase than the main population, and will therefore have a sub-
critical recruitment. The proof of Theorem 1 extends this to nonstationary behaviour
and MYC. The mechanism thus described is precisely expressed in Lemma 1 of
Sect. 5.

Bulmer (1977) appears to be the first to have noticed the SYC phenomenon in
theoretical models related to those discussed in this paper. Bulmer (1977) inter-
prets it, within his more general formulation, as a result of the property that “...
competition is more severe between than within age classes ...” (p. 1102). Indeed,
a similarity between the SYC phenomenon and classical models of competition,
was also noticed by Solberg (1998). Even so, we find Bulmer’s interpretation, when
applied to the present case, to be somewhat formal; in view of eqs. (1)–(5) we prefer
the one given above.
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