
Bandwidth optimizations for standards-based publish/subscribe
in disadvantaged grids

Espen Skjervold, Ketil Lund, Trude H. Bloebaum, Frank T. Johnsen
Norwegian Defence Research Establishment (FFI)

Kjeller, Norway
E-Mail: {espen.skjervold, ketil.lund, trude-hafsoe.bloebaum, frank-trethan.johnsen}@ffi.no

Abstract— NATO has identified Web services as a key enabler
for its network enabled capability. Web services facilitate
interoperability, easy integration and use of commercial off-
the-shelf components, and while request/response-based
schemes have hitherto been predominant, publish/subscribe-
based services are gaining ground. SOAP-based Web services,
however, introduce considerable communication overhead,
and optimization must be done to enable use on the tactical
level. Data compression is one such optimization, and it works
well for large messages. We claim that the inherent
characteristics of publish/subscribe-based Web services are
such that using difference-based compression will allow
effective compression also for small messages.

In this paper we present the design and implementation of a
proof-of-concept mechanism called ZDiff, which we have tested
on several types of military data formats. Together with our
SOAP-based proxy system it can be used together with
commercial off-the-shelf Web services software. The results
show that difference-based compression outperforms
traditional compression for small messages, at the same time as
it never performs worse than traditional compression for
larger messages.

Index terms – Compression, Web services,
publish/subscribe, WS-Notification

I. INTRODUCTION

One of the main challenges of realizing NATO network
enabled capability (NNEC) is enabling users to exchange
information with each other at all operational levels, even
down to the tactical level. There, one frequently encounters
so-called disadvantaged grids, which are characterized by
low and variable throughput, unreliable connectivity, and
energy constraints imposed by the wireless communications
grid that links the nodes [1]. NATO has identified Web
services as a key enabler for NNEC [2], and we have
previously shown that the use of Web services is possible
across heterogeneous networks, even down to the tactical
level [3].

So far, Commercial Off-The-Shelf (COTS) Web services
infrastructure has primarily been used within the
request/response paradigm. However, the publish/subscribe
paradigm is making headway due to favorable characteristics
such as loose and asynchronous coupling between
information producers and consumers, as well as push-based
data dissemination. The latter improves latency/liveness and

eliminates wasted requests, which encumbers
request/response mechanisms, since consumers have to poll
for new information (see Fig. 1). Furthermore, with the
emergence of mobile ad-hoc networks (MANETs) on the
tactical level, communication systems have to deal with new
challenges such as changing network topology and network
fragmentation. Indeed, [4] argues that the decoupling
properties of publish/subscribe makes it especially suited for
MANET environments.

Web services, whether it is request/response or
publish/subscribe, are based on SOAP and eXtensible
Markup Language (XML). Standardizing on these formats
facilitates interoperability, easy integration and the use of
COTS components [3]. On the other side, the verbosity of
XML introduces a lot message overhead, making
information exchange particularly challenging in low
bandwidth environments like disadvantaged grids. As we
have shown in previous work [5], compression techniques
enable the use of Web services on low bandwidths, but the
degree of compression varies greatly with the volumes of
data being transferred within a single message. In general,
large messages will achieve a better compression ratio than
small messages. Also, the data type will influence the
achievable compression ratio. For instance, lossless
compression algorithms such as Zlib Deflate [6] may
compress a 10 kB XML message with a factor of 1:15. A 0.8
kB XML message of the same structure and format on the
other hand, only achieves a compression ratio of 1:2 [5].

Figure 1. Request/response vs publish/subscribe.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

This can be a problem on the tactical level, because much
of the network traffic on this level typically consists of data
like position updates and chat messages, producing small
messages. By aggregating several small messages before
sending them, larger messages and thereby better
compression ratios, can be achieved. This, however, means
that the individual messages must be delayed until the
aggregate message is large enough, which in turn means
increased and highly variable latency. In situations where,
e.g., up-to-date position information is critical, this may not
be acceptable.

On the other hand, much of the content of SOAP
messages is information that does not change between
messages, and this is especially so for publish/subscribe. By
taking advantage of the similarity between messages and
only transmitting the differences from messages sent earlier,
it is possible to achieve a much better compression ratio for
small messages than ordinary compression does.

We therefore propose to utilize such difference-based
compression for publish/subscribe based on Web services,
and in this paper we present a proof-of-concept
implementation, called ZDiff. It is an important premise that
unmodified COTS software should be able to utilize the
compression mechanism, and we have therefore integrated
ZDiff in our DSProxy software [3]. This allows the client
and application software to be unaware of the existence of
the compression mechanism at the same time as low latency
information exchange over disadvantaged grids is made
possible.

Our measurements show that difference-based
compression performs considerably better than Zlib for small
messages, while at the same time never doing worse than
Zlib for large messages. It is worth noting that, because plain
Zlib compression is used as a fallback, ZDiff will never
perform worse than Zlib, independent of data type. In
addition, contrary to some compression methods, the
messages are not altered in any way prior to compression,
meaning that digital signatures will still be valid after
compression and decompression.

It should also be noted that, similar to other compression
mechanisms, the use of ZDiff requires access to the non-
encrypted message. This is because encryption removes all
visible structure from the message, and thus renders all types
of compression impossible. Therefore, the compression
component must reside within the trusted domain, and
securing the message exchange must be done on lower
layers. Consequently, application-level encryption is not
feasible unless compression is also done at this level.

The remainder of this paper is structured as follows: We
first present related work in Section II, before discussing the
background for our work in Section III. Next, we address the
concept and implementation in Section IV and present the
evaluation in Section V. Finally, Section VI concludes the
paper.

II. RELATED WORK
It should be noted that ZDiff is only intended as a proof-

of-concept implementation. Our main focus is on showing
the feasibility and benefits of using diff-based compression

for publish/subscribe in disadvantaged grids. There exist
several algorithms and implementations of diff-based
compression, and some of these may prove to be at least as
efficient as ZDiff. On the other hand, ZDiff demonstrates
how existing, well-proven compression software (Zlib) can
be reused to achieve differential compression.

RFC 3284 [7] - VCDIFF and the xdelta open source
implementation of this diff-based algorithm is an example of
previous work using diff for compression purposes. It is
targeted towards storage and transmission of files and file
versions. It has status as “Proposed standard”, and has had
this since 2002.

RFC 3229 [8] - Delta encoding in HTTP defines the use
of delta encoding for HTTP 1.1. Though this is an old
specification (2002), it has not been widely adopted by
neither server vendors nor browser developers. Delta coding
for HTTP did not see widespread use, because it required
modifying servers and browsers in order to add support for
the technique. Hence, this inspired our idea in this paper to
add delta coding to Web services proxies. This allows us to
get the benefits of delta coding for our Web services traffic,
while at the same time retaining compatibility with COTS
services and clients.

ZDelta [10] is a general purpose, lossless compression
library that uses a modified version of Zlib to generate deltas
of HTML pages, although it can also be used on other data
types. There has been little activity around ZDelta after
2004, but it could potentially be considered as an alternative
to ZDiff.

In [9], an edge proxy between tactical network and
disadvantaged grids is proposed. This proxy adapts the
content passing through it in a way that reduces overhead.
This adaptation is an informed content filtering which
removes optional fields from XML formatted messages and
increases the compression rate of images that pass through it.
This does reduce overhead, but in a destructive manner
where information is lost, as the content that was sent does
not match the content that is received on the other side of the
proxy. This requires both clients and services to be aware of
the existence of the proxy, as they must be able to cope with
the possibility that in-transport modification of messages
may occur. This is particularly challenging if one attempts to
leverage Web services security standards, because modifying
messages will cause digital signature verification to fail.
Hence our orthogonal approach in this paper - we developed
a proxy which can function with COTS clients and services.
As a result, we get the benefit of reduced network resource
usage without the penalty of having to tailor clients and
services to our solution.

III. BACKGROUND

A. Publish/subscribe
In publish/subscribe systems, information consumers

need to be able to express which types of information they
are interested in. This can be done in one of two ways, either
by the use of topics, or through content-based filtering. The
NATO Core Enterprise Services Working Group (CESWG)

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

has chosen WS-Notification for its publish/subscribe
services. WS-Notification is an OASIS-approved standard
for Web services publish/subscribe, and comprises three
parts, - WS-BaseNotification, WS-BrokeredNotification and
WS-Topics. Together, they enable consumers (or some other
node on behalf of a consumer) to subscribe to a broker (or
some other node acting as a subscription manager) for
information published under a specific topic. When
producers publish information to the broker under a specific
topic, the broker then pushes a notification message to all
subscribing consumers. This is illustrated in Fig. 2, where a
producer publishes notifications on two different topics,
“NFFI” and “NVG”.

This scheme allows for the decoupling of consumers and
publishers, and enables consumers to receive only what they
are interested in. As with all publish/subscribe-based
mechanisms, new data are pushed to the consumer after
being published, eliminating the need for consumers to poll
for new data. This enables instant data dissemination, and
eliminates the risk of the request returning empty handed,
which happens when requests are made when no new data is
available. Fewer wasted requests means reduced network
traffic.

A consumer that has expressed interest in a specific topic
will need to have the notifications published on that topic
delivered in a data format it understands. In a Web services
context, this often means that all information published on a
specific topic is of the same type, i.e., uses the same XML
Schema definition. This in turn means that consecutive
messages exchanged between any pair of nodes are likely to
be very similar in structure and format. In many cases, much
of the content will also be repeated from message to
message.

This high degree of similarity between consecutive
messages makes compression techniques based on message
differencing an obvious choice. In other words, even in the
case of small messages that normally compress poorly, there
is a potential for significant message size reduction by
utilizing knowledge about previous message content in the
compression process.

Figure 2. WS-Notification components.

B. DSProxy
While compression enables the use of XML and SOAP

in disadvantaged grids, frequent delay and disruptions make
end-to-end connections difficult to initiate and maintain.
Connection-oriented transport protocols such as TCP break
down when the delays get too long, or when disruptions
occur. In practice, TCP is non-functional in many wireless
tactical environments [11]. Standard Web services and
publish/subscribe-based schemes such as WS-Notification
rely on TCP-based end-to-end connections for
communications between consumers, producers and brokers.
In [3] we describe how the need for persistent end-to-end
connections can be eliminated, using the Delay and
disruption tolerant SOAP Proxy (DSProxy).

We designed the DSProxy in order to extend the reach of
Web services from networks with infrastructure into the
tactical domain [3]. It is a self-organizing proxy-based
network overlay enabling robust Web services across
heterogeneous networks. By presenting a standard
HTTP/TCP interface to the applications, COTS Web
services as well as WS-notification brokers and consumers
are able to send and receive SOAP messages through
disadvantaged grids. This is illustrated in Fig. 3.

Each DSProxy node throughout the overlay provides
store-and-forward functionality, adding robustness to the
network. The Web services client opens an ordinary TCP
connection to its nearest DSProxy node that is held open for
the duration of the call. The Web services invocation SOAP
message is then routed between DSProxy nodes across the
overlay, and once it arrives at the correct DSProxy node, the
requested Web service is invoked. The Web services
response SOAP message is then routed back to the first
DSProxy, which in turn returns it to the Web services client,
and then closes the TCP connection. Normally, a DSProxy is
deployed on both the client machine and the server machine,
meaning that the previously required end-to-end TCP
connection is reduced to a local TCP connection between the
client and its local DSProxy and between the service and its
local DSProxy.

The DSProxy already uses standard compression (ZLib),
but we have now further refined the overhead reducing
capabilities by introducing difference-based compression, or
“diffing”, as described in this paper. The reason for
integrating ZDiff in the DSProxy is to utlilize the standard
HTTP/TCP-based interface of the DSProxy, allowing COTS
software to take advantage of ZDiff.

Figure 3. A simple network layout adding store-and-forward capability to

a publish/subscribe system using DSProxy nodes.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

C. Compression
When deployed in a publish/subscribe system, the

DSProxy nodes will carry both subscription messages from
the consumers to the producers (or notification
brokers/subscription managers, depending on the setup), and
notification messages from the producers (or notification
brokers) to the consumers. In order to reduce bandwidth
usage between DSProxy nodes, all messages are compressed
using Zlib. SOAP messages, using XML, will usually see
significant size reductions when compressed. Zlib employs
two compression strategies, the Huffman encoding and LZ77
[12]. While Huffman encoding creates an alphabet allowing
frequently used characters to be represented by very few bits,
LZ77 is a lossless substitution coder algorithm that finds
sequences of data that are repeated. The repeated data are
then substituted with a reference to a previous occurrence of
the same data, requiring only a few bytes to represent the
starting position and length.

Because LZ77 substitutes recurring data sequences with
references, its ability to compress data depends on the extent
of repeating data within the message. While this may vary
from message to message, large messages tend to contain
more repeating data, yielding higher compression ratios. This
is illustrated by [5], where NATO Friendly Force
Information (NFFI) track messages containing a varying
number of tracks are compressed using GZip (Zlib). While
compressed messages containing a single track achieves a
compression ratio of 1:2, messages containing 10 tracks
achieve a ratio of 1:15. This is due to XML being verbose,
and the fact that a lot of the XML that makes up a track is
metadata in the form of tags, attributes and namespace
references describing the data. Because this metadata are
repeated for every track, compression ratios will improve
with the number of tracks per message. This fact can be
exploited by aggregating NFFI messages from multiple
sources over a period of time, constructing aggregate
messages containing several smaller messages, thus
achieving better compression ratios. However, this leads to a
compromise between bandwidth requirements and
liveness/latency requirements and is clearly not ideal. To
preserve the low latency/liveness property, aggregation
should be avoided, and single tracks should be sent without
any delay.

IV. CONCEPT AND IMPLEMENTATION
Even though the DSProxy already enables Web services

and XML/SOAP-based publish/subscribe schemes in
disadvantaged grids, bandwidth scarcity is still a factor and
may become prohibitive when using a publish/subscribe
system that produces many small notification messages
frequently. To improve the compression ratios for small
messages without compromising liveness/latency, we have
devised a diff-based compression scheme to be used with the
DSProxy network overlay system. Because DSProxy nodes
can be deployed throughout the network, reliable exchange
of diff-based messages can be performed between any two
DSProxy nodes.

In order to achieve favorable compression ratios on small
messages one can create a virtual aggregate message based
on data previously exchanged with other nodes. By keeping
track of previously exchanged messages (a local cache), and
keeping track of which nodes they are exchanged with, a
virtual message can be constructed by the sender, comprising
one or more previously exchanged messages.

Once a node receives a new message M to forward, it
first constructs the virtual message based on a subset of the
previously exchanged messages, called message V1. It then
creates a new virtual message V2, such that V2 = V1 + M.
Both messages V1 and V2 are now compressed using Zlib.
The resulting compressed messages are called C(V1) and
C(V2), respectively.

Next, Diff = C(V2) - C(V1) is computed. Diff is now a
compressed, binary representation of the difference between
M and V1, and together with a few bytes of metadata
(describing the IDs of the messages V1 was constructed
from), this constitutes the message (also known as a patch)
sent to the receiving DSProxy. In Fig. 4, an example is
shown where V1 is constructed from messages 1, 2 and 4.

On the receiving side, V1 and V2 can be reconstructed
from Diff, the message IDs and the local message cache. By
decompressing both virtual messages, message M can be
reconstructed as M = V2 - V1. The receiver will now add M
to its message cache for future referencing. It is important to
note that the reconstructed M on the receiving side is an
exact copy of M on the sending side. This means that digital
signatures will still be valid, as opposed to some
compression schemes that remove unnecessary data (white
spaces, prefixes, etc.) in order to improve compression.

The scheme described above is basically a difference-
based compression scheme, which in effect allows a patch to
be created from the differences between one target document
and multiple source documents. The patch will contain both
new data and references to series of shared sequences of data
between the target document and the source documents. The
scheme, which we have named ZDiff, was implemented as a
software component using Java, and embedded into the
DSProxy middleware system. When utilized by the DSProxy
system, the source documents are the messages previously
exchanged between any two DSProxys, and bandwidth usage
is reduced by sending the patch instead of the entire
compressed message. As discussed in the “Results and
Discussion” section, this amounts to significant bandwidth
savings while preserving the liveness/latency properties and
providing exact/lossless message reconstruction.

Figure 4. Example of diff-based message transfer.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

ZDiff was designed to produce the delta between
multiple source messages (cached messages) and one target
message (the new message), unlike most existing diff-based
compression protocols, which takes one source and one
target message. The ZDiff protocol was developed in Java,
and uses JZlib [13] (version 1.1.1) internally. JZlib is an
open source Java project designed to be a pure-Java re-
implementation of the Zlib algorithms. It supports the
originally specified Z_Partial_Flush mode, which for unclear
reasons have been deprecated in later versions of Zlib. The
partial flush mode ensures that when compressing data,
hitherto buffered data are finalized and output, but allowing
the next packet to continue using compression tables from
the end of the previous packet.

This is key to the ZDiff protocol, because it allows the
new message to be compressed and concatenated at the end
of the virtual message, without altering the compressed
binary data preceding it. This allows the receiver to recreate
the compressed virtual message-based on its cache, and then
concatenate the received diff, together forming a valid Zlib
compressed binary set which can then be decompressed to
restore the new message. The JZlib deflator was configured
to use the highest compression level (Zlib level 9), ensuring
the smallest possible compressed messages and diffs.

The patch messages produced by ZDiff contain, in
addition to the actual set differences, a few bytes of metadata
representing the number of referenced messages and their
respective unique ids. The total metadata size amounts to 4 +
(n x 4) bytes, where n is the number of referenced
documents. A patch referencing 3 previously exchanged
messages will thus contain 16 bytes of metadata.

V. RESULTS AND DISCUSSION
The application specific efficiency of diff-based

compression was measured by using ZDiff to compress
NFFI messages, NVG messages (Nato Vector Graphics) and
MIP messages (Multilateral Interoperability Programme,
JC3IEDM), standardized XML formats used for military
applications. Their compressed sizes were then compared to
the uncompressed messages’ sizes, their sizes when
compressed with Zlib only, and their sizes when compressed
with EXIficient [14] (version 0.8). The latter is an open
source implementation of the W3C Efficient XML
Interchange (EXI) [15] format specification written in the
Java programming language, and is a protocol especially
designed for high efficiency XML compression. EXIficient
was used in both schema-less and schema-informed modes,
the latter requiring the XML schemas for the message
formats being compressed, yielding higher compression
ratios. EXIficient was configured to use the Default fidelity
options and the COMPRESSION coding mode. For all tests,
Zlib was configured for best compression, using Zlib
compression level 9.

Because ZDiff produces the difference between the new
message and previously exchanged messages, at least one
previously exchanged message needs to be present in the
sender’s and receiver’s cache. The worst case situation for
ZDiff, which occurs when no messages have yet been
exchanged, produces a message compressed with Zlib only,

with exactly 4 bytes of message overhead. For all the
following tests, it’s assumed that at least one message has
already been exchanged. For the setup, the sender and
receiver’s cache was populated with one message of the
same format as the one being sent. The new message was
modified, so that all fields carrying format-specific
information (the actual content, or payload) were altered
using arbitrary values of the same length as in the cached
message. For the NFFI messages, these were fields like
system id, transponder id, datetime, latitude and longitude.

As shown in Fig. 5, ZDiff performs better than the other
compression techniques in all cases. For the NFFI message,
the Zlib compressed message size is 40.5% of the original
message, while the ZDiff compressed message size is a mere
7.6%. EXIficient performed better than pure Zlib with 28.3%
for schema-less mode, and 27.2% for schema informed
mode. While the best EXIficient compression was 1.5 times
better than Zlib alone, ZDiff was yet 3.6 times better than
EXIficient, a significant improvement.

WS-Security is often used with SOAP-based services,
and comprises a flexible and feature-rich SOAP extension
providing end-to-end security. It can be used to add digital
signatures, certificates and confidentiality labels to SOAP
messages, facilitating authentication and authorization.
While being very useful for providing security in systems
using SOAP-based messaging, it may significantly add to the
total message size. As shown in Fig. 5, the “NFFI” message
increases from 1107 to 4560 bytes (labeled “NFFI w/
security”) when signature, certificate, and confidentiality
labels are added. While this is fine for internet-based
systems, it may become a problem on the tactical level and in
disadvantaged grids. Standard Zlib compression, as well as
schema-less and schema-informed EXIficient compression
may remedy the situation to some extent, yielding
compressed message sizes of 2026, 1715 and 1576 bytes
respectively. The compressed message produced with ZDiff
however, is only 115 bytes large, a mere 2.5 % of the
original message size.

The reason for the big differences in the compression
results lies in the structure of the SOAP data associated with
the WS-Security extension. In addition to being verbose and
voluminous, there is little repeating data, making it less
suitable for standard Zlib compression. Furthermore, the
message contains a certificate requiring 890 bytes of Base64
encoded data, which compress poorly. However, this data
remain unmodified between messages created by the same
producer/system, and the ZDiff protocol can take advantage
of this by replacing the certificate in its entirety with a
reference, requiring only a few bytes. For messages carrying
a unique certificate sent for the first time, which occurs once
every time a WS-Security enabled producer sends its first
message, ZDiff’s efficiency decreases somewhat, as seen
from the bar labeled “NFFI w/security new origin” in Fig. 5.
While still half the size of EXIficient, the compressed
message does increase from 2.5% to 16.9% of the
uncompressed message size.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

Figure 5. Comparison of message sizes for the different messages using the different compression techniques.
Note that the blue NVG bar is truncated for readability.

The NVG message compression tests display yet a different
pattern, in that all compression algorithms perform fairly
well. This is due to the fact that the NVG message contains a
lot of repeating data, in the form of recurring XML tags and
namespace references. This allows Zlib to substitute a lot of
data sequences with references pointing to previously
occurrences of the same sequences, yielding high
compression efficiency. ZDiff still performs 2.1 times better
than EXIficient, producing a compressed message size that is
only 6% of the uncompressed message.

Finally the MIP message achieves a compression rate of
1:12 using ZDiff, or 8.1% of the uncompressed image,
making it 1.4 times more efficient than schema-informed
EXIficient. As with the NVG message, the MIP message
contains a lot of repeating data, enabling all algorithms to
perform decently.

While the aforementioned results show significant
improvements using ZDiff, they also demonstrate efficiency
differences based on the content and structure of the XML
formats. In order to present a more general performance
evaluation of the ZDiff scheme, an experiment was
performed using random data.

Fig. 6 shows compression efficiency when random
changes are inserted into a message before performing
ZDiff-based compression. The test is initiated with two
identical 1000 byte large messages, one being the source
message and one being the target message. The two
messages are identical, constructed from random data. Then,
the target message is modified, substituting parts of it with
new, random data. Compression tests are performed 101
times (0%-100% changes), each time introducing one more
percent of changes to the target message. The graph is based
on the averages over 1000 runs. For the sequential placement
scenario shown in Fig. 6, the random data modifications are
all introduced in one continuous block at the beginning of the
target message. This causes ZDiff to create a patch starting
with the changed data, followed by exactly one reference for
the remainder of the message, referring to one continuous

block in the source document. As the portion of the target
message which is being changed grows, the patch grows in a
linear fashion, presented with the blue line in Fig. 6.

For the second test, the aforementioned setup is repeated,
but now the random data are inserted (substituted) at random
places within the message, one byte at a time.

Measures are taken to avoid two random insertions being
placed in the same position. Because the modified data are
no longer located within a continuous block, the references
created by ZDiff will substitute progressively smaller
sequences of data. Instead of one reference pointing to a
large block, there will be more and more references in
between short sequences of modified data. As seen from the
red line in Fig. 6, the random placement generally produces
significantly larger patches than sequential insertion, but the
efficiency improves with the percentage of the message
being modified. This is because while bytes are inserted at
random locations, with the increasing number of insertions,
an increasing number of changes will end up forming
continuous sequences of changed data.

While ZDiff produces patches smaller than the
uncompressed message for up to 91% changes using
sequential placement, it is only beneficial for up to 54%
changes when using random placement. Because randomized
data are very different from SOAP and XML, these findings
should not be used to infer efficiency when dealing with
actual SOAP messages. They do however illustrate how
compression efficiency changes with the distribution and
amount of changes between messages. Note that it would not
make sense comparing these results with Zlib, as random
data compress very poorly (actually producing a message
larger than the original for this test).

In order to compare CPU requirements for the different
compression schemes, compression was performed 10,000
times using each solution. The message compressed was a
single track NFFI message 1107 bytes large. The averages
are presented in Table 1.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

Figure 6. The blue line showing patch size as the amount of sequential
random data increases, the red line showing patch size as the amount of

randomly inserted random data increases.

As seen in Table 1, standard Zlib by far outperforms the
other solutions in terms of processing time. ZDiff performs
worst, taking 1.3 times longer than EXIficient w/Schema,
and 12.2 times longer than pure Zlib. We argue that this is an
acceptable tradeoff in order to significantly reduce network
utilization, enabling instant dissemination of small,
standards-based messages in publish/subscribe systems on
the tactical level. It should also be noted that other diff-based
algorithms may be faster than ZDiff. Our prototype
implementation, however, shows that processing time is not
a prohibitive factor with diff-based compression.

All the evaluations and comparisons above have been
based on the premise that ZDiff is performed with one
message of the same format present in the sender and the
receiver’s cache, serving as the source message. When using
a DSProxy overlay, multiple messages of different formats
would be cached, in order to be able to perform ZDiff
compression regardless of the format of the received
messages. In topic-based notification systems it makes sense
to cache and group messages within a data structure
according to their topics. Messages published under the same
topic will most likely be of the same format, and should be
diffed against other messages of the same format in order to
achieve favorable compression rates.

Depending on the resource constraints for the nodes in a
given network, the SOAP proxies should be configured to
cache a given number of messages of each format, e.g., 10.
When ZDiff on the sender side receives a message to
compress, it simultaneously receives the 10 cached messages
of the same format, and then performs diff-based
compression against all ten, one by one. It then determines
which cached message yielded the best compression ratio,
and returns the corresponding patch to the SOAP
middleware component for transmission. Because ZDiff
performs the compression 10 times, the total processing time
will increase with the same factor.

TABLE I. AVERAGE CPU TIME IN MILLISECONDS PER
MESSAGE USING DIFFERENT COMPRESSION SCHEMES

CPU times
Compression
scheme Zlib EXIficient EXIFicient

w/schema ZDiff

Milliseconds
per message 0.22 2.03 2.10 2.69

While ZDiff scales linearly with the number of messages

to diff against and thus is predictable, a very large cache size
together with large message sizes in a high throughput
system could potentially put too high load on the CPU on
limited devices. Therefore, ZDiff can be utilized in ratio-
bounded mode and time-bounded mode. The former halts
diffing towards cached messages when a threshold
compression ratio is achieved, and the latter halts the diffing
when the specified amount of milliseconds has been
exhausted. Theoretically, ZDiff could allow a new message
to be diffed against multiple messages simultaneously,
referencing several messages in the same patch. In practice
however, this has proven to yield insignificant gains for
typical scenarios. ZDiff benefits by referencing shared data
across messages, which is usually things like XML tags,
attributes and namespace references, normally present in
every message of the same format. One could, however,
imagine situations where a new message also contains
dynamic content, which have earlier been exchanged over
several messages. Here, differencing based on multiple
messages may prove beneficial.

Aside from ZDiff, schema-informed EXIficient achieves
the highest compression rates for all tests. However, unlike
both ZDiff and Zlib, it does not reconstruct an exact copy of
the source message. This is due to some of its optimization
strategies, such as removing whitespaces and reducing
precision for floating-point numbers [15]. While this would
be fine for most applications, it constitutes a problem when
dealing with WS-Security mechanisms such as digital
signatures. When signing a message, a hash value is
calculated for the part of the message one wants to sign.
Then, the cryptographic signature is produced based on the
hash value. If the signed portion of the SOAP is altered ever
so slightly, e.g. by removing a whitespace, the corresponding
hash value will change, and the signature verification will
fail. While the EXI specification describes a compression
mode allowing exact reconstruction, all our attempts
achieving this with EXIficient failed. It should also be noted
that doing so would decrease the compression ratio achieved
with EXIficient.

A requirement for using schema-informed EXIficient is
for the XML schemas to be pre-distributed to all nodes
sending and receiving the messages. With ZDiff, this is not
necessary, potentially easing the deployment process and
providing more flexibility. A catch with ZDiff however, is
that the first message of any data format cannot be diffed,
and will only be compressed with pure Zlib. While this
means the first message of any format will be larger than if
compressed with schema-informed EXIficient, one could just
as easily pre-distribute the first message (a sample message
of the specific format), and instruct ZDiff to include this in
its list of source messages. However, we argue that although
the first message will be somewhat larger, this is quickly
compensated when receiving the subsequent diffed
messages.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

VI. CONCLUSION
Using ZDiff, our prototype implementation of a

difference-based compression scheme, together with
DSProxy, a SOAP proxy overlay, we demonstrated
significant compression rate improvements for small SOAP
messages. Tests using random generated messages show that
ZDiff’s compression efficiency changes with the distribution
and amount of changes between messages. Our
implementation performed better than standard lossless data
compression (Zlib), as well as the specialized, high
performance XML compression standard EXI, yielding
significantly smaller message sizes for most tests. For very
small messages (1100 bytes), ZDiff performed 5.3 times
better than Zlib, and 3.6 times better than EXIficient.
Because ZDiff restores an exact copy of the received
message, it works well will security standards such as WS-
Security and digital signatures. Such messages are also ideal
for diff-based compression, achieving compression ratios as
high as 1:40. While requiring slightly more processing time
per message, we argue that this is an acceptable tradeoff for
enabling standards-based publish/subscribe in disadvantaged
grids on the tactical level.

REFERENCES

[1] A. Gibb, H. Fassbender, M. Schmeing, J. Michalak, and J.
E.Wieselthier. Information management over disadvantaged grids.
Final report of the RTO Information Systems Technology Panel, Task
Group IST-030 / RTG-012, RTO-TR-IST-030, 2007.

[2] P. Bartolomasi, T. Buckman, A. Campbell, J. Grainger, J. Mahaffey,
R. Marchand, O. Kruidhof, C. Shawcross, and K. Veum. NATO
network enabled capability feasibility study. Version 2.0, October
2005.

[3] Lund, K., Skjervold, E., Johnsen, F. T., Hafsøe, T., Eggen, A., Robust
Web Services in Heterogeneous Military Networks, IEEE
Communications Magazine, Vol. 48, No. 10, October 2010, pp. 78-
83.

[4] P. Costa et al., “Socially-Aware Routing for Publish-Subscribe in
DelayTolerant Mobile Ad Hoc Networks,” IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5,
JUNE 2008.

[5] F. T. Johnsen and T. Hafsøe, “Using NFFI Web Services on the
tactical level: An evaluation of compression techniques”,
13th ICCRTS, Seattle, USA, June 2008.

[6] [RFC-1951] Deutch, P: "DEFLATE Compressed Data Format
Specification version 1.3", May 1996.

[7] The VCDIFF Generic Differencing and Compression Data Format,
<http://tools.ietf.org/html/rfc3284, June 2002>.

[8] Delta Encoding in HTTP, <http://www.ietf.org/rfc/rfc3229.txt>,
January 2002

[9] Śliwa J., Gleba K., Amanowicz M., Adaptation Framework foR web
services prOvisionin tactical environment, MCC 2010: Military
Communications and InformationSystems Conference, Wrocław, 27-
28.09.2010; in: Concepts and Implementationsfor Innovative Military
Communications and Information Technologies, Warszawa: Redakcja
Wydawnictw Wojskowej Akademii Technicznej, 2010. ISBN 978-
83-61486-70-1, s. 213-227(MK-301).

[10] Trendafilov, D., Memon, N., and Suel, T., “zdelta: An Efficient Delta
Compression Tool”, Technical report, TR-CIS-2002-02 (6/26/2002).

[11] A. Gibb. Challenges for middleware imposed by the tactical army
communications environment. NATO IST-030/RTG-012 Workshop
on ’Role of Middleware in Systems Functioning over Mobile
Communication Networks’, 2003.

[12] D. Salomon. Data Compression — The Complete Reference, 2nd
edition. Springer, 2000

[13] JZlib - zlib in pure Java, <http://www.jcraft.com/jzlib/>
[14] EXIficient, <http://exificient.sourceforge.net/>.
[15] Kamiya, T. and J. Schneider, "Efficient XML Interchange (EXI)

Format 1.0", World Wide Web Consortium Recommendation REC-
exi-20110310, March 2011, <http://www.w3.org/TR/2011/REC-exi-
20110310>.

Dette er en postprint-versjon / This is a postprint version.
DOI til publisert versjon / DOI to published version: 10.1109/MILCOM.2012.6415635

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

