
lable at ScienceDirect

Defence Technology 13 (2017) 269e280
Contents lists avai
Defence Technology

journal homepage: www.elsevier .com/locate/dt
Projected area and drag coefficient of high velocity irregular fragments
that rotate or tumble

John F. Moxnes a, *, Øyvind Frøyland a, Ivar J. Øye b, Tom I. Brate c, Eva Friis b,
Gard Ødegårdstuen b, Tallak H. Risdal a

a Norwegian Defence Research Establishment, Land Systems Division, P.O. Box 25, 2027 Kjeller, Norway
b Nammo Raufoss AS, P.O. Box 162, 2831 Raufoss, Norway
c HPVisTech AS, Bjørnstadgutua 21, 2092 Minnesund, Norway
a r t i c l e i n f o

Article history:
Received 29 January 2017
Received in revised form
17 March 2017
Accepted 28 March 2017
Available online 10 June 2017

Keywords:
Fragments
Form factor
Mach number
Drag coefficient
Cauchy area
Tumbling
* Corresponding author.
E-mail address: john-f.moxnes@ffi.no (J.F. Moxnes
Peer review under responsibility of China Ordnan

http://dx.doi.org/10.1016/j.dt.2017.03.008
2214-9147/© 2017 Published by Elsevier Ltd. This is a
a b s t r a c t

3 degrees of freedom (DOF) exterior ballistic computer models are used in fragment studies to calculate
individual trajectories of each fragment based on drag coefficient and the projected (presented) area in
the direction of velocity of center of mass. The expectation of a randomly distributed projected area is
commonly used for fragments that tumble (random rotation) during flight. We forecast a model where
the expected drag coefficient is dependent of shape and Mach number. Rotation or tumbling only affects
the expected projected area. Models of projected areas during tumbling and rotation are presented. An
examination of the data by McCleskey (1988) indicates that the volume of the fragment to the power of
2/3 is a better parameter to characterize the drag coefficient of the fragments than the maximum pro-
jected area. Hydrocode simulations are used to verify results and to study projected area and drag co-
efficient of fragments.
© 2017 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Range of 3D-rotating irregular fragments from warheads can
currently not be simulated directly by computational fluid dynamic
(CFD) simulations due to the long computer run time. Even 6 de-
grees of freedom (DOF) exterior ballistic computer models are
commonly not used due to inaccurate models of torques on irreg-
ular fragments during flight. In general, the arbitrary shaping of the
investigated fragments makes direct numerical simulation or strict
analytical study highly complicated and prohibitively expensive
when applied to the whole ensemble of fragments. Approaches to
estimate drag of the arbitrary body have been based on mimicking
that the body drag can be described by the correcting coefficients to
well-studied regular shapes like spheres or ellipsoids [10] and [13].

3-DOF ballistic computer models calculate individual trajec-
tories of each fragment based on time averaged drag coefficient and
time averaged presented (projected) area in the direction of
).
ce Society
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velocity of the center of mass of the fragment. The expectation of
the projected area based on a randomly distributed projected area
(RDA) is commonly used for fragments that tumble (random rota-
tion) during flight. However, it is notable that only around 35% of
the fragments were shown to tumble [14]. Few concerns have been
raised to the use of RDA for fragments that do not tumble but rotate
around some axis.

The drag coefficients of fragments are dependent on the shape
of the fragments, and the Mach number. The maximum projected
area of fragments (Amax) divided by RDA, or the volume of the
fragment to the power of (2/3) divided by RDA have been used as a
measure for shape. However, literature reports on large un-
certainties in drag dependency of shape and Mach number, which
produces an associated uncertainty in far field impact range of
fragments. A good estimate of the projected area of tumbling or
rotating fragments is necessary to predict fragment range.

Chartes and Thomas [2] estimated the drag coefficients on
spheres from subsonic to high supersonic velocities.

Hansche and Rinhart [6] measured the drag coefficient of
tumbling cubes at Mach numbers from 0.5 to 3.5. At 0.5 Mach the
drag coefficient was around 0.82, but showed a clear tendency to
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 An alternative model is to substitute AC with A
T
p in equation (3).
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decline towards lower velocities. Peak drag coefficient was 1.25 at
the Mach number of around 1.25. For higher velocities the drag
coefficient decreased linearly to reach 1.1 at a Mach number of 3.

Dunn and Porter [4] presented one of the first models of drag
coefficient versus Mach number of irregular fragments produced
by warheads. The drag coefficient of irregular fragments is larger
than those for a sphere or cube. However, no dependency between
drag coefficient and the shape of irregular fragments was
proposed.

Henderson [8] shows a model for the drag coefficient of spheres
as function of the Mach number, the Reynolds number, and the
temperature difference between the sphere and the gas.

Ramsey et al. [16] collected fragment characteristics such as
mass, velocity, and projected areas from 155 mm detonating war-
heads. The RDA of fragments was measured by using an icosahe-
dron gage apparatus. The apparatus consists of a light source,
collimating and condensing lenses, a crossed wire support for the
fragment and a light level detector. RDA is thenmeasured bymeans
of the light obscured by the fragment in the collimated beam. It was
found that a significant number of fragments have shape and drag
characteristics approaching a cube. The drag coefficient versus
Mach number was lower than established by Dunn and Porter [4]
for subsonic velocities, but was higher for supersonic velocities. It
was concluded that the revised values for drag coefficient and
shape lead to an increased range of around 70%.

Heiser [9] presented models for the drag coefficient as a func-
tion of Mach number for irregular fragments. The drag coefficient at
subsonic velocities is even lower than Ramsey et al. [16]; but at the
same level as Dunn and Porter [4] at supersonic velocities.

Dehn [3] defined the shape as the maximum projected area of
fragments (Amax) divided by RDA, or the volume of the fragment
raised to the power of (2/3) divided by RDA.

McCleskey [14] proposed a model where the drag coefficient is
dependent on shape, where shape is given as Amax/RDA. The pa-
rameters were estimated by using the ARCA Br. vertical wind tunnel
at a speed of 0.1 Mach. Additionally, McCleskey proposed a model
where the drag as a function of Mach number is constructed by
scaling the drag curve for a sphere.

Miller [15] examined, by wind tunnel and air gun tests, the drag
coefficients of fragment number 60 from McCleskey [14]. This
fragment shows a drag coefficient of 0.9, while rotating around the
T axis with flat spin in the ARCA Br. vertical wind tunnel at a speed
of 0.1 Mach [14]. Using a transonic and supersonic tunnel up to
Mach 4, the drag coefficient was somewhat higher than established
theoretically by McCleskey [14]. A new drag function was
forecasted.

Haverdings [7] presents a table for drag coefficient on page 19.
Catovic et al. [1] proposed a model where shape is defined as
slenderness (aspect ratio), which is the ratio of fragment dimen-
sion parallel to velocity vector and fragment dimension perpen-
dicular to velocity vector. CFD simulations (Fluent) of fragments
show that the drag coefficient varies significantly with slenderness
[1].

We here forecast a model where the expected drag coefficient is
dependent on shape and Mach number. Rotation or tumbling only
affects the expected projected area. Models of projected areas
during tumbling and rotation are presented and examination of the
data byMcCleskey [14] indicates that the volume of the fragment to
the power of 2/3 is a better parameter to characterize the drag
coefficient of the fragments than the maximum projected area.
Hydrocode simulations are used to verify results and to study
projected area and drag coefficient of fragments.

The accurate trajectory predictions for ballistic applications
depend not only on a drag model, but, in lesser degree, also on a lift
model. Even for spherical bodies the lift force is induced by rotation
via the Magnus effect. Irregular bodies are generating lift without
rotation and possible coupling drag-lift forces may apply. These
forces may influence torque on the body and therefore the spin loss
through time. The lift force may influence range but is neglected in
this work.

The rest of this article is sectioned as followed: Section 2 elab-
orates the drag model. Section 3 describes models for projected
areas during rotation or tumbling. In section 4 we examine the data
from McCleskey [14] and apply different models of the drag coef-
ficient. Section 5 analyses drag coefficient and projected area by the
use of CFD simulation, while section 6 concludes.
2. The drag model

The drag force F
!

on fragments in air is given by

F
!¼ �1

2
rApCdk v!k v! (1)

where v! is the velocity of the center of mass of the fragment, r is
the density of the air, Ap is the projected area in the direction of
velocity of center of mass of the fragment, and Cd is the drag co-
efficient. In general, for a fragment the projected area and the drag
coefficient vary through time.

For a given fragment and orientation in the air flow, dimensional
analysis shows that the drag coefficient is only dependent on the
Reynolds number and the Mach number. The Reynolds number is
Re ¼ v a r=h, where v is the velocity, r is the density of the air, a is
the typical dimension of a fragment and h is the viscosity of the air.
Using that v ¼ 100 m/s, a ¼ 0.001- 0.01 m, r ¼ 1.3 kg/m3, and h ¼ 2
10�5 Pa s for air, gives Re in the order of 103-105, which indicates
that the drag coefficient is to a good approximation independent of
the Reynolds number [12].

Assuming an ensemble average the drag force in equation (1) is
written as

F
!¼ �1

2
rApCdk v!k v! (2)

where Ap and Cd is the expectation for the projected area and drag
coefficient. For simplicity, Cd will be written as Cd in this section.
The time average over some time gives the same as the expectation
if the ergodic hypothesis applies. In this article we will assume that
time average gives the same as ensemble average (expectation).

The drag is dependent on the orientation of the fragment rela-
tively to the air flow. We hypothesize that the expected drag co-
efficient of naturally formed fragments in air is only dependent of
body characteristic of the fragment per se, and theMach number. In
particular, volume relative to surface area is a viable parameter to
characterize a fragment as a first order signature. The following two
models are forecasted for the drag coefficient, to read

Cd ¼ Cd

 
V2=3

AC
;M

!
; or Cd ¼ Cd

�
Amax

AC
;M
�

(3)

where V is the volume of the fragment,M is the Mach number, Amax

is the maximum projected area of the fragment and AC is the
Cauchy area defined in this article to be ¼ times the surface area
(As) of the fragment.1 Dehn [3] defined the shape as the volume of
the fragment to the power of (2/3) divided by RDA, or the
maximum projected area of fragments (Amax) divided by RDA.
McCleskey [14] proposed that the drag coefficient is dependent on
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the ratio of the maximum projected area to the expected projected
area during tumbling. Use can be made of the property that for a
closed surface which is everywhere convex, RDA is equal to AC. We
denote RDA as A

T
p, where the superscript “T” means tumbling and

the overbar means expectation. A sphere gives the maximum of
V2=3=AC ¼ ð4=3Þ2=3=p1=3 ¼ 0.83, and Amax=AC ¼ 1. The ratio V2=3=A

R
p

is the scaled shape factor and is denoted as CC ¼ K�1 [5,7], while
Amax=A

R
p is denoted as AR [14]. For simplicity we from now suppress

the M that denotes the Mach dependency.
Most fragments have a varying projected area Ap during flight

because of tumbling or rotation. To give expected values the frag-
ment can be conceived as being placed with different orientations
in the air stream at a fixed Mach number. The average for all ori-
entations can be termed a forced tumbling situation. Alternatively,
the fragment may be released into a uniform air stream and
allowed to decelerate and tumble under the influence of the
aerodynamic forces.

The form factor cF is in the literature defined by the relation

cF ¼def m�
A
T
p

�3=2 (4)

where m is the mass of the fragment. The mass can be written as
m ¼ rfV , where rf is the density of the fragment. Thus

�
rf
cF

�2=3

¼ A
T
p

V2=3 ¼ K ¼ C�1
C (5)

An infinitesimal thin plate is convex. The Cauchy formula gives
the expected projected area of an infinitesimal thin plate to be

A
T
p ¼ AC ¼ 1

4
ATOT ¼ 1

4
ðAþ AÞ ¼ A

2
(6)

where A is the area of each side of the plate. Thus a tumbling plate
shows the expected projected area one half the side area of the
plate. Note that for an infinitesimal thin plate the form factor is zero
since the volume is zero.
3. Mathematical formulas for projected areas

The plate is important to analyze since it is simple, and plates
may construct a parallelepiped or other more complicated
geometrical objects (see appendix A for a more general object). Let
q be the angle of attack of an infinitesimal thin plate of any shape
with area of one side as A. According to the Cauchy relation the
expected projected area is during tumbling A

T
p ¼ AC ¼ A=2 as found

in equation (6).
We apply a direct calculation. The projected area Ap qð Þ is

Ap qð Þ ¼ ASin qð Þ; 0 � q � p

2
(7)

Applying two different probability densities for the angle of
attack q as an example gives

Tumbling : rTq ¼ Cos qð Þ; Rotation : rRq ¼ 1
p=2

(8)

where rT
q
is the distribution corresponding to tumbling, and rR

q
is a

uniform distribution corresponding to fragments rotating around
an axis normal to the velocity vector and normal to the normal
vector of the plate. The expectation is
Tumbling : ET
�
Ap
�¼ Z

p=2

0

ASin qð ÞCos qð Þdq¼
�
1
2
ASin2 qð Þ

	p=2
0

¼1
2
A

Rotation : ER
�
Ap
�¼ 1

p=2

Zp=2
0

ASin qð Þdq¼2A
p

(9)

Thus for an infinitesimal thin plate the expected area is A/2
during tumbling. However, during rotation the area is ð2=pÞA,
which is around 30% larger.

More insight may be established by calculating the distribution
of the projected area corresponding to tumbling or rotation around
an axis, to read

Tumbling : P
�
Ap < x

� ¼ PðASin qð Þ< x Þ ¼ Pðq<ArcSinðx=AÞ Þ

¼
ZArcSinðx=AÞ

0

rTq qð Þdq

¼
ZArcSinðx=AÞ

0

Cos qð Þdq ¼ SinðArcSinðx=AÞ Þ ¼ x=A

Rotation : P
�
Ap < x

� ¼ PðASin qð Þ< x Þ ¼ Pðq<ArcSinðx=AÞ Þ

¼
ZArcSinðx=AÞ

0

1
ðp=2Þdq ¼ ArcSinðx=AÞ

ðp=2Þ (10)

This gives the distribution for projected areas as

Tumbling : rTAp
xð Þ ¼ 1=A

Rotation : rRAp
xð Þ ¼ v

vx

 
ArcSinðx=AÞ

ðp=2Þ

!
¼ 1

ðp=2Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

A2

s 1
A

(11)

Thus the distribution of the area of the plate during tumbling is
uniform.

The expectation is

Tumbling : ET
�
Ap
� ¼ ZA

0

x
�
1
A

�
dx ¼ 1

2
A; ET

�
Ap

2
�
¼
ZA
0

x2

A
dx

¼ 1
3
A2

(12)

The variance is

Tumbling : VarT
�
Ap
� ¼ ET

�
Ap

2
�
� ET

�
Ap
�2 ¼ 1

3
A2 � 1

4
A2 ¼ 1

12
A2

¼ 0:083A2

(13)

Further, rotation gives
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Rotation : ER
�
Ap
� ¼ 1

p=2
1
A

ZA
0

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

A2

s dx

¼ 1
p=2

A
�
�
�
1� x2

A2

�1=2 	A
0
¼ 2A

p

ER
�
Ap
�2 ¼ 1

p=2
1
A

ZA
0

x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

A2

s dx ¼ 1
p=2

A2
Z1
0

u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p du ¼ A2

2

VarR
�
Ap
� ¼ ER

�
Ap

2
�
� ER

�
Ap
�2 ¼ A2

2
�
�
2
p

�2
A2

¼ A2
�
p2 � 4

4p2

�
¼ 0:149A2

(14)
Thus the variance is larger during rotation.
If the plate rotates around any axis that is normal to the velocity

vector, the area is

Rotation :

ER
�
Ap
� ¼ 2

p
SinðlAÞA

(15)

where lA is the angle between the normal vector to the surface and
the rotational axis.

Parallelepiped:
Let A, B, and C denote the area of the sides of a parallelepiped.

The projected area is [5]

Ap ¼ ACos qð Þ þ BSin qð ÞSin fð Þ þ C Sin qð ÞCos fð Þ; q � p

2
; f � p

2
(16)

It is notable that the angles are only defined in the first quadrant
due to symmetry. Thus absolute values are avoided during calcu-
lation. The expectation is

E
�
Ap
�

¼
Zp=2
0

Zp=2
0

ðACos qð ÞþBSin qð ÞSin fð ÞþCSin qð ÞCos fð ÞÞSin qð Þrqfdqdf

(17)We consider tumbling, to read

Tumbling : rTqf ¼ 1
p=2

Sin qð Þ;
Zp=2
0

Zp=2
0

1
p=2

Sin qð Þdqdf ¼ 1 (18)

The expectation becomes
ET
�
Ap
� ¼ A

T
p ¼ 2

p

Zp=2
0

Zp=2
0

ðACos qð Þ þ BSin qð ÞSin fð Þ þ CSin qð ÞCos fð Þ Þ

¼ 2
p

0
BBB@

A
1
2

h
Sin2 qð Þ

ip=2
0

p

2
þ B

�
1
2
ðq� Sin qð ÞCos qð Þ Þ

	p=2
0

½ � Cos fð Þ �p=20

þC
�
1
2
ðq� Sin qð ÞCos qð Þ Þ

	p=2
0

½Sin fð Þ �p=20

1
CCCA
The result agrees with the Cauchy formula as it should. In
Appendix B we find some relations for the parallelepiped that are
not very well known in the literature. The variance is [14]

Tumbling :

VarT
�
Ap
� ¼ ET

�
Ap

2
�
� ET

�
Ap
�2 ¼ 1

12

�
A2 þ B2 þ C2

�
þ
�

4
3p

� 1
2

�
ðABþ AC þ BCÞ

(20)

The maximum projected area is [14]

Amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p
(21)

We let the parallelepiped rotate uniformly with the axis of
rotation normal to the velocity direction. Let the side with area C be
the side that does not interact with the air flow. The parallelepiped
mimics two plates of area A and B normal to each other that rotate.
The projected area is then Ap ¼ ACos qð Þ þ BSin qð Þ, where q is the
rotational angle. The expected projected area is during rotation

ER
�
Ap
�

¼ A
R
p ¼ 1

p=2

Zp=2
0

ðASin qð Þ þ BCos qð Þ Þdq¼ 2
p
ðAþ BÞ ¼ 1

1:57
ðAþ BÞ

(22)

This is in agreement with the calculation for two independent
plates. The expected projected area during tumbling is
ðAþ Bþ CÞ=2. If the parallelepiped is long and thin the area C can be
neglected. Then the expected projected area during the rotation is
around 30% larger than the projected area during tumbling. The
drag coefficient is constructed from expected area and force. Too
small estimated expected area will give too large drag coefficient.

The projected area of the parallelepiped during rotation can be
written as

ER
�
Ap
� ¼ A

R
p ¼ 2

p
ðAþ BÞ ¼ 1

p
ð2Aþ 2BÞ ¼ 1

p
OL (23)

where O is the circumferential length in the direction of the velocity
vector, and L is the length normal to the velocity vector. In general
we may write for any rotating convex surface

ER
�
Ap
� ¼ A

R
p ¼ 2

p

Zp=2
0

ZO
0

LSin qð Þqds ¼ 1
p
OL (24)

Assume that the parallelepiped rotates with the rotational axis
normal to the velocity vector. The parallelepiped can now be ori-
ented arbitrarily. Set a fixed coordinate system in the parallele-
piped. Define the vector
Sin qð Þdqdf

¼ A
2
þ B
2
þ C

2
¼ AC (19)
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ABC
��! ¼ A e!A þ B e!B þ C e!C (25)

where e!A; e
!

B, and e!C are the unit normal vectors to the paral-
lelepiped sides A, B, and C respectively. In this body fixed coordinate
system define the rotational vector as

U
!¼ UA e!A þ UB e!B þ UC e!C ;

uA ¼ UA���U!���; uB ¼ UB���U!���; uC ¼ UC���U!���; u!¼ U
!���U!���

u!¼ U
!���U!���; u!¼ uA e!A þ uB e!B þ uC e!C

(26)

where uA;uB, and uC are the components of the rotational vector
along the normal axis of the parallelepiped. Note that
u2
A þ u2

B þ u2
C ¼ 1. The angles between the rotational vector and the

normal vectors of the parallelepiped are

SinðlAÞ ¼ ku!� e!Ak; SinðlBÞ ¼ ku!� e!Bk; SinðlCÞ ¼ ku!� e!Ck
(27)

It follows that

u!� e!A ¼ ðuA e!A þ uB e!B þ uC e!CÞ � e!A
¼ ðuB e!B � e!A þ uC e!C � e!AÞ ¼ �uB e!C � uC e!B

u!� e!B ¼ ðuA e!A þ uB e!B þ uC e!CÞ � e!B ¼ uA e!C þ uC e!A
u!� e!C ¼ ðuA e!A þ uB e!B þ uC e!CÞ � e!C ¼ uA e!B � uB e!A

(28)

Thus

Sin2ðlAÞ ¼ ð � uB e!C � uC e!B Þ2¼ u2
B þ u2

C ¼ 1� u2
A

Sin2ðlBÞ ¼ ðuA e!C þ uC e!AÞ2¼ u2
C þ u2

A ¼ 1� u2
B

Sin2ðlCÞ ¼ ðuA e!B � uB e!AÞ2¼ u2
B þ u2

A ¼ 1� u2
C

Sin2ðlAÞ þ Sin2ðlBÞ þ Sin2ðlCÞ ¼ 2 (29)

The expected projected area is then

A
R
p ¼ 2

p
ðASinðlAÞ þ BSinðlBÞ þ CSinðlCÞ Þ

¼ 2
p

�
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

A

q
þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

B

q
þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

C

q �
¼ 2

p
ðA;B;CÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

A

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

B

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

C

q �
(30)

We may write

A
R
p¼

2
p

 
A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
þB

ffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

p
þC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2

q !
;u¼uA; v¼uB

vA
R
p

vu
¼2
p

 
� Auffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u2
p þ Cuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2
p

!
;
vA

R
p

vv
¼2
p

 
� Bvffiffiffiffiffiffiffiffiffiffiffiffi

1�v2
p þ Cvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2
p

!

(31)

During extremum vA
R
p=vu¼vA

R
p=vv¼0. This gives

A2u2

1� u2
¼ C2u2

u2 þ v2
;
B2v2

1� v2
¼ Cv2

u2 þ v2
(32)

The solution u ¼ v ¼ 0 gives that
ER
�
Ap
� ¼ A

R
p ¼ 2

p
ðAþ BÞ (33)

This corresponds to the situationwhere the normal vector to C is
normal to the rotational axis.

Appendix C shows that the second solution is given by

ERMax
�
Ap
� ¼ 2

ffiffiffi
2

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p
¼ 2

p

ffiffiffi
2

p
Amax (34)

Thus during rotation with the rotational axis normal to the ve-
locity direction the maximum average projected area of the
parallelepiped is 2

ffiffiffi
2

p
=p ¼ 0.9 times the maximum projected area.

Summarizing for the cube where A ¼ B ¼ C: For a cube with side
area A the minimum projected area is obviously A. The maximum
projected area is

ffiffiffi
3

p
A ¼ 1.73 A. The expected projected area is 1.5 A

during tumbling. During uniform rotation around an axis normal to
the velocity vector the minimum expected projected area is
ð4=pÞA ¼ 1.27 A, while the maximum expected projected area
during rotation is A 2

ffiffiffi
2

p ffiffiffi
3

p
=p ¼ 1.56 A.

If the cube changes orientation the bow shock ahead of the cube
generates a restoring force, and the cube is statically stable in su-
personic flow. Simulation in which the cube is given an initial
rotation and then released in supersonic flow may show an oscil-
latory behavior if the rotation is not too large initially. However, in
the transonic or subsonic regime the dynamic pressure is much
lower, and the restoring aerodynamic moment on the cube is not
sufficient to maintain stable oscillations, and tumbling will there-
fore appear more easily.

Rotation around the two principal axes of a fragment corre-
sponding to the smallest and the largest moments of inertia are
stable if aerodynamic forces are small. Fragments with three similar
moments of inertia, will due to perturbation from the air flow
rotate around all axes and show tumbling like behavior. A slender
fragment that rotates around the axis corresponding to the smallest
or largest moment of inertia may show pitch damping and thus set
the rotational axis normal or parallel to the velocity.

Our work does not address the case of the drag in the fragment
clusters. Fragments of tight cluster mutually affect each other, thus
the increasing or decreasing the individual drag force depending on
the geometric parameters of the ensemble. In case of supersonic
flow, there is an interaction of the frontal bow shocks from the
leading fragments as well as the wake patterns. These interactions
make the underlying problem very complex. On the other hand, the
supersonic drag can be decomposed into friction and wave com-
ponents, with the latter surpassing the former. Thus to estimate the
cumulative supersonic drag of the tight cluster one can apply
Whitcomb area rule that states that two fragments with the same
velocity have the same drag force provided that the projected area
is the same. During fragmentation of a warhead the fragments
expand much radially. Thus the fragments will soon approach a
separation distance with negligible mutually affections.
4. McCleskey [14] and studies on drag coefficient and
projected area during tumbling and rotation

McCleskey [14] proposed a model where the drag coefficient is
dependent on shape, where shape is modelled as the ratio of
maximum projected area to the expected projected area during
tumbling. McCleskey [14] further developed a model where the
drag coefficient as a function of the Mach number is constructed by
scaling the drag curve for the sphere. The data was categorized in 7
different groups, to be

1: Tumbling of 34 fragments. 2: Floating motionless of 6 frag-
ments. 3: Flat rotation of 8 fragments. 4: Rotating about L and T axis
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of 12 fragments. 5: Rotating around L and W axis of 3 fragments. 6:
Rotating around T axis of 13 fragments. 7: Rotating around L axis of
7 fragments. 8: Coning of 9 fragments. See appendix D for a sum-
mary of data and parameters.

Tumbling or rotating fragments show different expected pro-
jected area as shown in our last section. Section 2 proposed that
Cd ¼ Cd

�
V2=3=AC;M

�
or Cd ¼ CdðAMax=AC;MÞ as two alternative

models. The experimental data of McCleskey [14] do not show AC
but A

T
p. We 3D-scanned some typical fragments from the base of a

warhead, and performed a mathematical analysis. AC is not more
than 5% larger than A

T
p. This gives an error margin in our analysis.

Fig. 1 and Fig. 2 show the drag coefficient Cd versus V2=3=AC, or
versus Amax=AC for fragments that tumble [14]. The correlation is
better for V2=3=AC than for Amax=AC. At low Mach number the drag
coefficient for the sphere and the cube is 0.42 and 0.64 respectively
[14]. For a sphere Amax=AC ¼ 1, while V2=3=AC ¼ 0.83. For a cube
Amax=AC ¼ 2 30.5/3 ¼ 1.15, while V2=3=AC ¼ 2/3. Extrapolation of the
regression line in Fig. 1 to V2=3=AC ¼ 0, which corresponds to a
plate, gives the drag coefficient of 1.4 for a random tumbling plate.
For a plate Amax=AC ¼ 2. Extrapolation of the regression in Fig. 2 to
Amax=AC ¼ 2 gives the drag coefficient of 1.2.

We calculate the drag coefficient fromMcCleskey [14] using the
expected projected area during rotation for fragments that rotate
only. Fig. 3 shows the results for the fragments rotating around the
Fig. 1. The drag coefficient at Mach ¼ 0.1 vs V2=3=AC for tumbling fragments. Linear
regression is applied on the data. Numbers are fragment number according to
McCleskey [14]. 2 is a sphere and 3 is a cube. The regression line is
Cd ¼ �1:149 V2=3=AC þ 1:41. The big star is a base fragment that we 3D-scanned to
find the surface characteristics.

Fig. 2. The drag coefficient at Mach ¼ 0.1 vs Amax=AC for tumbling fragments. Linear
regression is applied on the data. Numbers are fragment number according to
McCleskey [14]. 2 is the sphere while 3 is the cube. The regression line is
Cd ¼ 0:481 Amax=AC þ 0:169. The big star is a base fragment that we 3D-scanned to
find the surface characteristics.
L-axis, where the L-axis of the fragment is normal to the velocity
direction [14]. The drag coefficient is much the same for fragments
that tumble or rotate, and rotation or tumbling only affects signif-
icantly the expected projected area. A model may be that tumbling
applies for fragments with V2=3=AC >¼ 0.55, while fragments with
V2=3=AC < 0.55 tumble or rotate. Further studies are necessary to
model whether fragments tumble or rotate.

Fig. 4 shows drag coefficients of fragments from the literature.
Hansche and Rinhart [6] measured the drag coefficient of cubes at
Mach numbers from 0.5 to 3.5. We use the small cube and
extrapolate to 0.64 at M ¼ 0.1 [14]. Dunn and Porter [4] presented
one of the first models for drag coefficient vs Mach number of
irregular fragments produced by warheads. Ramsey et al. [16]
modified Dunn and Porter [4]. The established drag coefficient
versus Mach number was lower than established by Dunn and
Porter [4] for subsonic velocities, but was higher for supersonic
velocities. Let Cd;SphereðMÞ denote the drag curve for spheres as
function of the Mach number M. For fragments McCleskey [14] set
that Cd;McCleskey ¼ Cd;Sphere Mð Þ � Cd;Sphereð0Þ þ D1. D1 is a function
of the shape, where a maximum and a minimum function for D1
based on wind tunnel measurements at ARCA Br. vertical tunnel at
a speed of 0.1 Mach was used. McCleskey [14] gives the average
drag coefficient D1 ¼ 0.82 for all the fragments that tumble. Rota-
tion gives D1 ¼ 1.04, and all fragments show the drag average co-
efficient of D1 ¼ 0.975. We find that the V2=3=AC ¼ 0.59 for some
Fig. 3. The drag coefficient at Mach ¼ 0.1 vs V2=3=AC for tumbling (blue) and rotating
(red) fragments. The small stars show all fragments of McCleskey [14]. The big star is a
base fragment that we 3D-scanned to find the surface characteristics.
Tumbling: Cd ¼ �1:10 V2=3=AC þ 1:37, Rotation: Cd ¼ �1:34 V2=3=AC þ 1:43.

Fig. 4. The drag coefficient as a function of the Mach number. Black: FFI model, Brown:
The sphere [11], Red: Dunn-Porter, Blue dotted: McCleskey, Black dotted: Heiser, Red
dotted: Ramsey et al., Cyan dotted: Miller with fragment number 60 of McCleskey that
rotates, Green dotted: The cube (Hansche and Rinhart).
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fragments from awarhead that we examine, and this is the input to
the McCleskey to give D1 ¼ 0.72 according to Fig. 3. However, Fig. 4
shows that scaling of the sphere drag curve by McCleskey does not
give the drag coefficient for the cube for higher Mach numbers. It
may be reasonable to use the drag coefficient for the cube for
varying Mach numbers since our fragments with V2=3=AC ¼ 0.59 is
close to the cube where V2=3=AC ¼ 0.67.

Miller [15] examined further by wind tunnel and air gun tests
the drag coefficients of fragment number 60 from McCleskey [14].
The drag coefficient was somewhat higher than established theo-
retically by McCleskey [14]. An alternative drag curve was fore-
casted. Heiser [9] presented models for drag coefficient as a
function of Mach number for irregular fragments.

Summarizing: The literature shows large scatter in drag coeffi-
cient of fragments. The data of McCleskey [14] show that the time
averaged drag coefficient is dependent on body shape. The scatter
in the drag coefficient data is reduced when applying that frag-
ments that rotate do not have the same projected area as fragments
that tumble. A model is forecasted where tumbling applies for
fragments with V2=3=AC >¼ 0.55, while fragments with V2=3=AC <
0.55 tumble or rotate.
5. CFD-studies of fragments generated by IMPETUS computer
fracture simulations

The steel base fragments of a spinning projectile were examined
by using the IMPETUS Afea computer code (IMPETUS for short) to
simulate mechanical fragmentation using the numerical node split
approach when reaching failure in the damage model. The base of
the projectile had a spherical dome shape and the corresponding
fragments have a large rotation rate due to torque generated during
Fig. 5. The fracture behaviour of the base shown at different times (0, 20 and 40 ms).

Fig. 6. The convex fragment in the global coordinate system.
the fragmentation process. Fig. 5 shows a time series of the fracture
behaviour of the base.

A typical fragment from the base of the projectile was taken out
from the IMPETUS output file. The fragment was simplified by
creating a convex surface from its nodes. The convex fragment is
shown in Fig. 6. The presented drag model and its validation in this
section deal with convex shapes. This may impose some limitations
from the practical point of view. For instance the concave golf ball
exhibits lower drag than its convex spherical counterpart due to
small-scale local vortices. We 3D-scanned some typical fragments
from the base of a warhead, and performed a mathematical anal-
ysis. During tumbling the expected projected area of the fragment
that was made convex, was not more than 5% larger than the ex-
pected projected area of the true fragment. This gives an error
margin in our analysis.

The mass of the convex fragment is 0.51 g. The volume, V, is
65.3 mm3. The surface area, As, is 98.3 mm2. This gives the Cauchy
area, AC ¼ ¼ As, to be 24.58 mm2. The form factor is then cF ¼ 4.2 g/
cm3, while the scaled form factor is V2=3=AC ¼ 0.66. The initial ve-
locity of the centre of mass in the global system is vx ¼ 980 m/s,
vy ¼ 51 m/s, and vz ¼ �11 m/s. x is the velocity direction of the
projectile. The directions of the principal axes of the fragment are
n!1 ¼ (-0.63, 0.3, 0.71), n!2 ¼ (0.55, �0.49, 0.68), n!3¼(0.55, 0.82,
0.14). The principal moments of inertia are I1 ¼ 1 g mm2,
I2 ¼ 2.04 gmm2, and I3¼ 2.65 gmm2. The initial rotation rate (spin)
vector of the fragment (in the global system) is
u!¼ (0.37, �0.69, �2.16) 104 rad/s. In general the spin around the x
axis is due to the nature of the fragmentation process less than the
root of the sum of squared spin components around the y and z axis.

The convex fragment was inserted into IMPETUS and simulated
as a rigid body. Two cases were simulated. The first case was a free
moving and rotating fragment. The second case was with air
interaction. The air in IMPETUS is modelled using discrete particles
with an air density of 1.225 kg/m3 and a particle density of 6400
particles/cm3. The necessary density of particles was found by
simulating a steel sphere with the same mass and velocity as the
fragment. The number of particles was chosen such that the drag
coefficient of the sphere was 1 at our initial velocity, 980 m/s.

The convex fragment was also simulated in the hydrocode STAR-
CCMþ. A 3D-implicit unsteady compressible flow model with a
time step of 10�6 s was used. The grid consisted of 1.6 106 cells. The
k� ε SST DES model for turbulence was used. The temperature was
15 degrees Celsius. The mesh was over set and a 6-DOF rigid body
model was coupled to the flow. Fig. 7 shows the grid. Also here a
sphere was initially used to validate the solution methodic. The
drag coefficient was found to be 1.02 for the sphere. The spherical
was also studied by applying a beta-version of the Xflow lattice
Boltzmann numerical code. The grid size was 0.15 mm and the
sphere did show a drag coefficient of 0.8. This is somewhat lower
than the results from STAR-CCM þ code.

The IMPETUS and the STAR-CCM þ simulations air were run for
0.003 s. Fig. 8 shows a pressure and a velocity plot at 0.003 s from
Fig. 7. The grid of the STAR-CCM þ simulation.



Fig. 9. The projected area vs time in seconds.
Red curve: STAR-CCMþ. Red dashed: Time average STAR-CCMþ. Blue: Free rotating
fragment. Blue dashed: Time average of free rotating fragment. Black: IMPETUS rigid
body motion solver. Black dashed: Cauchy area.

Fig. 8. Pressure and velocity plot.

Fig. 10. The drag coefficient vs the Mach number according to STAR-CCMþ.

Fig. 11. The drag coefficient vs the scaled projected area where the Cauchy area is used
as the reference. The star is the estimated time averaged drag coefficient based on the
Cauchy area plotted vs reference value of 1.
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STAR-CCMþ.
We examine the projected area and the drag coefficient. Fig. 9

shows the projected area during free rotation based on a 6 DOF
model of the fragment and during simulations by STAR-CCMþ. We
observe that up to around 0.001 s the projected area during free
rotation is much like the area in air simulatedwith the STAR-CCMþ.
The time average projected area for a free fragment is also shown
together with the time average area in STAR-CCMþ. We note that
that the time average area is much like the Cauchy area.

The true projected area given by the STAR-CCMþ code can be
used to find the drag coefficient by inverse modelling. We set that
Cd ¼ 2m _vx=r=vx=v=Ap tð Þ, where v is the absolute value of the ve-
locity from STAR-CCMþ. Fig. 10 shows the drag coefficient vs the
Mach number. Note that the drag coefficient is strongly varying
since the projected area varies with time.

We examine the drag coefficient and its dependency of the
projected area by plotting the drag coefficient vs the scaled pro-
jected area. The scaling parameter is the Cauchy area. Fig. 11 shows
the results. The drag coefficient is positively correlated with the
projected area. Higher projected area means lower slenderness and
the drag coefficient is found to increase with lower slenderness [1].
The star in Fig. 11 shows the estimated average drag coefficient of
1.14 based on the Cauchy area vs the Cauchy area. Different
methods can be used to estimate the average drag coefficient. We
use inverse modelling and set that Cd ¼ 2m _vx=r=vx=v=AC. The
objective is to find the drag coefficient that best fits to the STAR-
CCMþ data. Fig. 12 shows results of the computer simulations and
the STAR-CCMþ simulations. Best fit is achieved for Cd ¼ 1.14. The
average Mach number is 2.75. The sphere then shows a drag co-
efficient of 0.97 while the cube gives 1.09 according to Fig. 4. Given
that the STAR-CCMþ shows a drag coefficient of 1.02 for the sphere
it is seems reasonable to set that the drag coefficient of the frag-
ment roughly equal to the drag coefficient of cube for our Mach
number.
6. Conclusion

We show different novel analytical models for expected pro-
jected area and drag coefficient of fragments that tumble or rotate
with the rotational axis normal to the velocity vector. Examination
of the data of McCleskey [14] shows that the volume of the frag-
ment to the power of 2/3 is a better parameter for the expected drag
coefficient of the fragments than the maximum projected area. We
forecast a model where the expected drag coefficient is dependent



Fig. 12. The velocity is in the x direction.
Black curve: STAR-CCMþ. Black dashed curve: 3-DOF model with the Cauchy area as
projected area and constant drag coefficient.
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on shape and Mach number. The McCleskey data supports the
model. It is hypothesized that tumbling applies for fragments with
scaled shape factor larger or equal to 0.55, while fragments with
scaled shape factor less than 0.55 tumble or rotate.

We examined the drag and projected area of a base fragment
rApðxÞ ¼
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from awarhead by CFDmodelling using the STAR-CMMþ code. The
input physical characteristics of the fragment were found by
applying fragmentation in the IMPETUS Afea computer code
applying the node splitting method.

The CFD modelling by the STAR-CCMþ shows that the Cauchy
area is a good measure of the time averaged projected area during
time. The time averaged drag coefficient based on the Cauchy area
was found to be 1.14 for the Mach number of 2.75. The drag coef-
ficient for a sphere with the same mass and velocity was 1.02.
Simulations show that the drag coefficient is positive correlated to
projected area for our fragment. Further studies are necessary to
develop models that forecast whether fragments tumble or rotate
during a large range of Mach numbers.

Appendix A

2A þ B, where A ¼ pR2, and B ¼ 2pRL, where R is the radius of
the end surface, and L is the length. Consider an object with q as the
angle of attack. B different from zero defines a thin cylinder with
area of a cylinder. However, if B is zero we set the body as an
infinitesimal thin plate of any shape with area A. According to the
Cauchy relation the expected projected area is during tumbling
A
R
p ¼ AC ¼ ð2Aþ BÞ=4 ¼ A=2þ B=4 ¼ pR2=2þ pRL=2.
We apply a direct calculation. The projected area Ap qð Þ of the

cylinder is

Ap qð Þ ¼ ASin qð Þ þ B’Cos qð Þ;B’ ¼ 2RL ¼ B=p (A1)

We write (A1) as
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However, when Ap >MaxðA;B’Þ there are two possible angles of
attack corresponding to any given projected area, hence the general
formula:
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Appendix B. Relations for the parallelepiped

We find that
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Thus the variance is [14]
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The derivative of the projected area is given by
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The maximum area is found when vAp=vf¼vAp=vq¼0. This
gives
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The maximum projected area then becomes [14]
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Appendix C

We set that x ¼ u2; y ¼ v2. The other solution is given by
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Appendix D. McCleskey fragments and parameters

McCleskey on page D-4 states a number of fragments that
tumble. However, we do not include all of them in our matrix. In
Table 2 we have listed some fragments used in [14] and fragments
Table 1
Parameters that are used in the literature and in the present article.

Parameter Symbol Definition

Projected area Ap The presented area of a fragment.
Max. projected area AMax The presented area of a fragment
Mean projected area (T) A

T
p

Average presented area during tum

Mean projected area (R) A
R
p

Average presented area during rot

Cauchy area AC (1/4) x (total surface area).
Drag coefficient Cd Defined by the standard equation.

V Volume of a fragment.
Form factor cF cF ¼def m

ðAT

pÞ3=2
.

Scaled form factor CC ¼ K�1
CC ¼def V2=3

A
T

p

T axis (McCleskey) T Axis normal to length and width d
L axis (McCleskey) L Axis parallel with length direction
W axis (McCleskey) W Axis parallel with width direction

Table 2
Overview of the fragments studied byMcCleskey [14] exhibiting tumbling as a mode of m

Fragment no. Tumbling T axis rotation L axis rotation

6 X X X
12 X X X
13 X X X
21 X X
27 X X X
34 X X X

39 X X X
43 X X X
49 X X X
57 X X
62 X X
63 X X
64 X
65 X
70 X X
72 X X
74 X X
75 X X X
76 X X X
82 X
83 X X
we use in our matrix, with some comments.
Rotation around the L axes (the axis normal to the velocity and

along the longest direction of the fragment).
We include all the fragments of Figure D-7 on page D-8 except

fragment 85 where the projected area is not measured. Since the
in the direction that gives maximum value of AP.
bling.

ation around some axis.

The area represents either Ap (instantaneous value) or expected or.

irections of a fragment.
of a fragment.
of a fragment.

otion. *It appears that McCleskey associates tumbling with rotation around all 3 axes.

W axis rotation Comment Included

Tumbles when disturbed No
X * Yes
X No

No
X * Yes
X *

3D reconstruction impossible
No

X * Yes
X Missing info No
X Undefined « roll» No
X No

No
No

«Will float or tumble» No
«Will float (…) or tumble» No

No
Also floats No

No
X «Little bit of everything» No
X “Rotates and tumbles in all directions” No

“Tumbles around all axes” Yes
No
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number of fragments is small we include fragment number 5 that
have some additional coning which we neglect. It is notable that
only fragment 8 and 46 rotates around L only. The other fragments
also rotates around T (the axis is along the velocity direction).

The T, L andW axes as used by McCleskey are defined in Table 1.

References

[1] Catovic A, Zercevic B, Serdarevic S, Terzic J. Numerical simulations for pre-
diction of aerodynamic drag on high velocity fragments from naturally frag-
menting high explosive warheads. 15 th Seminar “ New Trends in Research of
Energetic Materials”, Part III. ISBN 978-80-7395-480-2. Czech Republic: Uni-
versity of Pardubice; 2012. p. 475e84. April 18-20, 2012.

[2] Charters AC, Thomas RN. The aerodynamic performance of small spheres from
subsonic to high supersonic velocities. J Aeronautic Sci 1945;12(4):468.

[3] Dehn JT. Terminal effectiveness, vulnerability methodology and fragmentation
warhead optimization. 1. A technical survey from historical perspective
ARBRL-TR-02234. April 1980, AD-A085021. 1980.

[4] Dunn D, Porter J. Air drag measurements of fragments. BRL Memorandum
Report No 915, APG, MD [August]. 1955.

[5] Galle LF. A statistical method for the employment of fragment hit area in
penetration equations or codes, Proc. 12th Int Symposium on Ballistics. March
1990. Rijswijk, Netherlands: San Antonio, 1990 Prins Maurits Laboratory TNO;
1990.
[6] Hansche GE, Rinhart JS. Air drag on cubes at Mach numbers 0.5 to 3.5.
J Aeronautical Sci 1952;19(2(1952)):83e4.

[7] Haverdings W. TNO Report TD94e0474: general description of the missile
systems damage assessment code (MISDAC@). Prins Maurits Laboratorium
TNO; 1994.

[8] Henderson CB. Drag Coefficient of spheres in continuum and rarefied flows.
AIAA J 1976;15(6).

[9] Heiser. Manual of NATO Safety principles for the storage of military ammu-
nition and explosives, NATO/PFP UNCLASSIFIED, AASTP-1 (Edition 1), PART II,
May 2006. 1979.

[10] Hidy GM. Aerosols, an industrial and environmental science. New York: Ac-
ademic Press; 1984.

[11] Hoerner SF. Aerodynamic Drag. Practical data on aerodynamic drag evaluated
and presented by Sighard F. Hoerner, Dayton, Ohio, USA. 1951.

[12] Landau LD, Lifshitz EM. Fluid mechanics, course of theoretical physicsvol. 6.
England: Pergamon Press; 1982. p. 171.

[13] Lerman A. Geochemical processes: water and sediment environments. New
York: Wiley-Interscience; 1979.

[14] McCleskey F. Drag coefficients for irregular fragments. Naval surface warfare
center (R15), NSWC TR 87-89. 881227060. 1988.

[15] Miller M. Drag coefficient measurements for typical bomb and projectile
fragments. August. US Army Research, Development and Engineering Center,
Aberdeen Proving Ground, MD; 1990.

[16] Ramsey R, Powell J, Smith W. Fragment hazard investigation program, NSWC
TR-3664. Dahlgren, VA, Oct., 1978. 1978.

http://refhub.elsevier.com/S2214-9147(17)30053-3/sref1
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref1
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref1
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref1
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref1
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref1
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref2
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref2
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref3
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref3
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref3
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref4
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref4
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref5
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref5
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref5
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref5
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref6
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref6
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref6
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref7
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref7
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref7
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref7
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref8
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref8
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref9
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref9
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref9
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref10
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref10
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref11
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref11
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref12
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref12
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref13
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref13
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref14
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref14
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref15
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref15
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref15
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref16
http://refhub.elsevier.com/S2214-9147(17)30053-3/sref16

	Projected area and drag coefficient of high velocity irregular fragments that rotate or tumble
	1. Introduction
	2. The drag model
	3. Mathematical formulas for projected areas
	4. McCleskey [14] and studies on drag coefficient and projected area during tumbling and rotation
	5. CFD-studies of fragments generated by IMPETUS computer fracture simulations
	6. Conclusion
	Appendix A
	Appendix B. Relations for the parallelepiped
	Appendix C
	Appendix D. McCleskey fragments and parameters
	References


