Show simple item record

dc.contributor.authorHausken, Kjellen_GB
dc.contributor.authorMoxnes, John Fredriken_GB
dc.date.accessioned2024-10-18T07:23:14Z
dc.date.accessioned2024-11-26T07:48:24Z
dc.date.available2024-10-18T07:23:14Z
dc.date.available2024-11-26T07:48:24Z
dc.date.issued2024-10-09
dc.identifier.citationHausken, Moxnes. Generalizing the Black and Scholes Equation Assuming Differentiable Noise. Journal of Applied Mathematics. 2024;2024:1-18en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3376
dc.descriptionGeneralizing the Black and Scholes Equation Assuming Differentiable Noise. Journal of Applied Mathematics 2024 ;Volum 2024. s. 1-18en_GB
dc.description.abstractThis article develops probability equations for an asset value through time, assuming continuous correlated differentiable Gaussian distributed noise. Ito’s (1944) stochastic integral and a generalized Novikov’s (1919) theorem are used. As an example, the mathematical model is used to generalize the Black and Scholes’ (1973) equation for pricing financial instruments. The article connects the Kolmogorov (1931) probability equation to arbitrage and to how financial instruments are priced, where more generally, the mathematical model based on differentiable noise may improve or be an alternative for forecasts. The article contrasts with much of the literature which assumes continuous nondifferentiable uncorrelated Gaussian distributed white noise.en_GB
dc.language.isoenen_GB
dc.subjectBlack og Scholesen_GB
dc.subjectKorrelasjonen_GB
dc.subjectStøyen_GB
dc.subjectSannsynlighetstettheten_GB
dc.titleGeneralizing the Black and Scholes Equation Assuming Differentiable Noiseen_GB
dc.date.updated2024-10-18T07:23:14Z
dc.identifier.cristinID2285072
dc.identifier.doi10.1155/2024/8906248
dc.identifier.doi10.1155/2024/8906248
dc.source.issn1110-757X
dc.source.issn1687-0042
dc.type.documentJournal article
dc.relation.journalJournal of Applied Mathematics


Files in this item

This item appears in the following Collection(s)

Show simple item record